CCINP ph 2019

- 1-3) $\omega_0 = \frac{\mathcal{E}^* \mathcal{E}_1}{\hbar}$ $\rho = \frac{3e}{4\pi a^3}$ La distribution est **invariante par rotation** suivant θ et φ : **la norme** du champ ne dépend que de r. Tous les plans contenant \overrightarrow{OM} sont des **plans de symétrie** pour la distribution donc des plans de symétrie pour le champ : $\vec{E}(M)$ appartient à tous ces plans, il est donc dirigé suivant \vec{e}_r .
- **4 & 5)** On choisit comme surface de Gauss la sphère centrée en O et de rayon $r: \oiint \vec{E}.d\vec{S}_{ext} = 4\pi r^2 E(r)$ La charge intérieure est $\rho \frac{4}{3}\pi r^3 \rightarrow \vec{E}(\pmb{M}) = \frac{\rho \vec{r}}{3\varepsilon_0} \rightarrow \vec{F} = -\frac{\rho e \vec{r}}{3\varepsilon_0}$ (Force de rappel) $\rightarrow \omega_0 = \sqrt{\frac{\rho e}{3m_e\varepsilon_0}}$

6 & 7)
$$\frac{d^2 \vec{r}}{dt^2} + \omega_0^2 \vec{r} = \vec{0} \rightarrow \vec{r} = -\frac{V_0}{\omega_0} \sin(\omega_0 t) \vec{e}_z \rightarrow \vec{p} = e \overrightarrow{MO} = \frac{eV_0}{\omega_0} \sin(\omega_0 t) \vec{e}_z$$

- 8) $\omega_0 \sim 10^{16} \ rad. \ s^{-1} \rightarrow \lambda_0 = \frac{2\pi c}{\omega_0} \sim 10^{-7} \ m$ Proche U.V.
- 9) Par conservation énergétique, le rayonnement s'accompagne d'une diminution de l'énergie mécanique.

10 & 11)
$$\frac{d^2 \vec{p}}{dt^2} + \frac{1}{\tau} \frac{d \vec{p}}{dt} + \omega_0^2 \vec{p} = \vec{0} \rightarrow \vec{p}(t) = \frac{eV_0}{\omega_0} \vec{e}_z e^{-\frac{t}{2\tau}} \sin(\omega_0 t)$$
 $\mathcal{E}_p = \frac{1}{2} m_e \omega_0^2 r_0^2 e^{-\frac{t}{\tau}} \sin^2(\omega_0 t)$

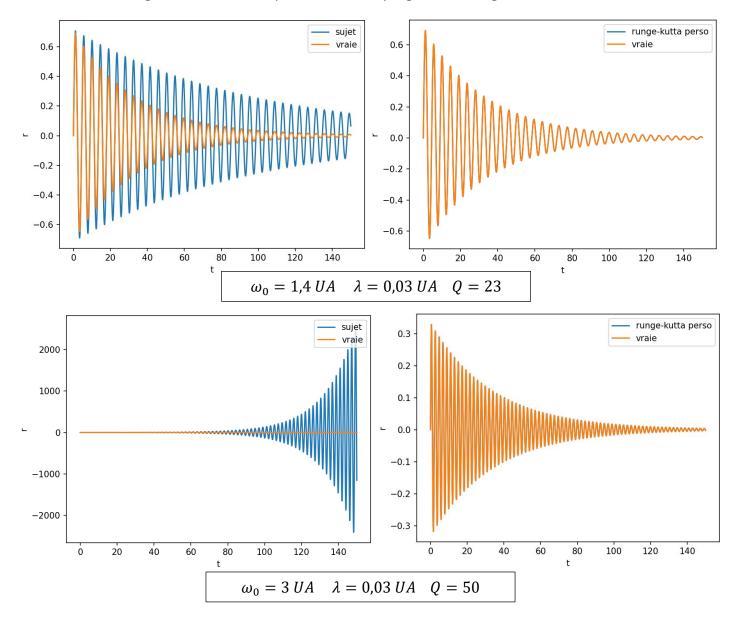
12)
$$\mathcal{E}_c = \frac{1}{2} m_e r_0^2 e^{-\frac{t}{\tau}} \left(-\frac{1}{2\tau} \sin(\omega_0 t) + \omega_0 \cos(\omega_0 t) \right)^2 \sim \frac{1}{2} m_e \omega_0^2 r_0^2 e^{-\frac{t}{\tau}} \cos^2(\omega_0 t)$$

- 13) ${\cal E}_m=rac{1}{2e^2}m_e\omega_0^2p_0^2~e^{-rac{t}{ au}}$ Amortissement de durée caractéristique au
- **14)** Il est question ici de la **méthode d'Euler** explicite. On note $x_n = r(t_n)$, $v_n = \frac{dr}{dt}(t_n)$ et $a_n = \frac{d^2r}{dt^2}(t_n)$ $\rightarrow x_{n+1} = x_n + v_n T_e$ et $v_{n+1} = v_n + a_n T_e$ avec $T_e = h = \frac{T}{N} \ll \frac{2\pi}{\omega_0}$ Les dérivées sont assimilées à des taux de variation.
- **15)** Successivement, le triplet (x, v, a) vaut (0, 1, -0.06), (50, -2, -0.06), (-50, -5, ...), (-300, ..., ...) L'instruction "euler(3,0,1)" retourne $[\mathbf{50}, -\mathbf{50}, -\mathbf{300}]$.
- 16) Nous mettons en place un compteur : $i=0\\ \text{while } i< N:\\ \dots\\ i+=1\\ \text{return tab_1}$

[Il est étonnant de constater que le premier terme de la liste tab_1 n'est pas la condition initiale mais 50. On peut éviter cela en initialisant le compteur à 1.]

- 17) L'oscillateur étant peu amorti $(w_0^2 \gg \lambda^2)$, on peut assimiler la pseudo période $\left(\frac{40}{19} \ UA\right)$ à la période propre $\frac{2\pi}{\omega_0} \to \omega_0 = \frac{19\pi}{20} \to \text{omega} = 19 * \text{np. pi/20}$ Vraisemblablement, $\mathbf{omega} = \mathbf{3}$
- 18) La méthode d'Euler proposée ne semble pas satisfaisante. Le décrément logarithmique $\delta = \frac{1}{n} \ln \left(\frac{r(t)}{r(t+nT^*)} \right) = \lambda T^* \text{ avec } T^* \text{ la pseudo période, nous permet d'être plus précis et confirme cette}$ impression : $\delta_{euler} = \frac{1}{15} \ln(2) = 0.046$ $\lambda T^*_{euler} = 0.14$ $\delta_{r\acute{e}el} = \frac{1}{11} \ln(2) = 0.063$ $\lambda T^*_{r\acute{e}el} = 0.063$

[Ceci est dû à un facteur de qualité $Q=\omega_0/2\lambda$ trop grand. Dans ce cas, la résolution est imparfaite voire même instable si Q devient beaucoup trop grand : il suffit de tester le programme avec la valeur de $\omega_0=3$ correspondant au tracé de la solution vraie pour s'en rendre compte. Une amélioration est possible avec la méthode de Runge-Kutta utilisant le point milieu. Un programme en ligne illustre cela.]



- 19) On étudie le rayonnement de Rayleigh (le seul au programme !) pour lequel l'approximation des régimes quasi stationnaires est vérifiée au sein de la distribution : $a \ll \lambda$ De plus, on se place dans la zone de rayonnement, c'est-à-dire $\lambda \ll r$. Le temps de propagation est très grand devant la période du signal (anti A.R.Q.S. !)
- **20)** Le plan (xy), en d'autres termes le plan $\theta=\frac{\pi}{2}$, est un plan d'antisymétrie pour la distribution donc le champ électrique sur ce plan est suivant \vec{e}_{θ} .

Les plans méridiens, en d'autres termes les plans $\varphi=cste$, sont des plans de symétrie pour la distribution donc le champ magnétique sur ces plans est suivant \vec{e}_{φ} .

Enfin, le champ électrique a la même dimension que le produit du champ magnétique avec une vitesse.

$$\vec{E}(M,t) = \frac{\mu_0 \sin \theta \, \dot{p}\left(t - \frac{r}{c}\right)}{4\pi \, r} \, \vec{e}_{\theta} \qquad \qquad \vec{B}(M,t) = \frac{\mu_0 \sin \theta \, \dot{p}\left(t - \frac{r}{c}\right)}{4\pi \, rc} \, \vec{e}_{\phi}$$

21-23)
$$\vec{\Pi} = \frac{\mu_0 \, p_m^2 \, \omega_0^4 \, \sin^2 \theta}{16\pi^2 c \, r^2} \sin^2 \left[\omega_0 \left(t - \frac{r}{c} \right) \right] \vec{e}_r \rightarrow \langle \vec{\Pi} \rangle = \frac{\mu_0 \, p_m^2 \, \omega_0^4 \, \sin^2 \theta}{32\pi^2 c \, r^2} \vec{e}_r$$

$$\rightarrow \Phi_{ray} = \frac{\mu_0 \, p_m^2 \, \omega_0^4}{32\pi^2 c} \int_0^{2\pi} d\varphi \, \int_0^{\pi} \sin^3\theta \, d\theta \qquad \qquad \Phi_{ray} = \frac{p_m^2 \, \omega_0^4}{12\pi \epsilon_0 c^3} = \frac{e^2 \omega_0^2}{6\pi \epsilon_0 m_e c^3} \mathcal{E}_m \quad \text{(Sans I'exponentielle)}$$

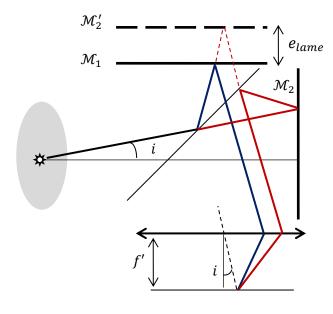
24)
$$\mathcal{E}_{ray} = \hbar \omega_0 \sim \Phi_{ray} \tau_c \rightarrow \tau_c \sim \frac{6\hbar \varepsilon_0 c^3}{p_m^2 \, \omega_0^3} \sim \frac{6\hbar \varepsilon_0 c^3}{e^2 a^2 \, \omega_0^3} \sim 1 \, ns$$
 (Entre un laser et une lampe spectrale)

25 & 26)
$$\delta \mathcal{E}_m = -\Phi_{ray}\delta t = -\gamma \mathcal{E}_m \delta t$$
 En passant à la limite, $\frac{d \mathcal{E}_m}{dt} + \gamma \mathcal{E}_m = 0$

A partir de maintenant, $\omega_0 \sim 3.10^{15} \ rad. \ s^{-1}$ car la raie est dans le visible : $\tau = \frac{1}{\gamma} \sim 2.10^{-8} \ s \gg \frac{2\pi}{\omega_0}$

27)
$$\tau_c \sim 5\tau \sim 10^{-7} \ s \rightarrow \Delta \nu = \frac{1}{\tau_c} \sim 10^7 \ Hz$$
 Elargissement naturel (Voir fin du sujet!)

28 & 29) Le miroir \mathcal{M}_1 et le symétrique de \mathcal{M}_2 par rapport à \mathcal{S}_p forme une lame d'air équivalente.



$$\delta = 2e_{lame}\cos i$$
 Voir cours!

[Pour le calcul de la différence de marche, vous devez connaître parfaitement les deux techniques de calcul présentées page 20 du cours "Interférences lumineuses à deux ondes". Si vous avez le choix, privilégiez la méthode avec S_1' et S_2' , tout en haut, hors figure ici !]

$$I(i) = \frac{I_{max}}{2} \left(1 + \cos\left(\frac{2\pi\delta(i)}{\lambda_0}\right) \right)$$

On observe des **cercles concentriques** car l'intensité ne dépend que de l'angle i.

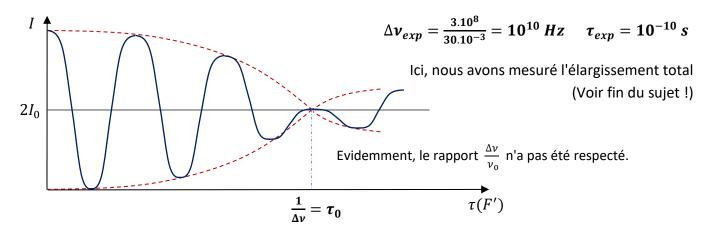
30) Deux radiations de fréquences ν et ν' différentes ne peuvent interférer. L'intensité résultant de cette superposition est la somme des intensités $I(\nu)$ et $I(\nu')$. Si au voisinage d'un même angle i, l'une est maximale et l'autre minimale, les franges disparaissent. $\Delta p = \delta \Delta \left(\frac{1}{\lambda}\right) = \frac{\delta \Delta \nu}{2c} = \frac{e_{lame} \Delta \nu}{c} \quad \text{en } F'$

31) Il y a brouillage si le décalage d'ordre vaut $\frac{1}{2}$ (maximum-minimum !) donc $e_{lim} = \frac{c}{2\Delta\nu}$

32)
$$dI(F') = 2\frac{I_{\nu}(\nu)}{4} d\nu [1 + \cos(2\pi\nu\tau(F'))]$$
 $\tau(F')$ est le retard temporel $p(F') = \nu\tau(F')$

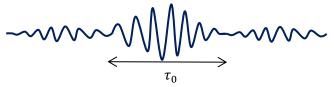
33-35) On somme les
$$dI$$
 (incohérence) : $I(F') = \frac{I_0}{2} + \frac{I_{\nu m}}{2} \int_{\nu_0 - \Delta \nu/2}^{\nu_0 + \Delta \nu/2} \cos(2\pi \nu \tau(F')) d\nu$ Erreur d'énoncé
$$= \frac{I_0}{2} + \frac{I_{\nu m}}{4\pi \tau(F')} \left[\sin(2\pi \nu \tau(F')) \right]_{\nu_0 - \Delta \nu/2}^{\nu_0 + \Delta \nu/2} = \frac{I_0}{2} \left[1 + \operatorname{sinc}(\pi \Delta \nu \tau(F')) \cos(2\pi \nu_0 \tau(F')) \right]$$

[Cette partie correspond à l'exercice 3.3 du TD "Optique ondulatoire"]



Si l'écart temporel atteint la durée d'un train d'onde, la superposition n'est plus possible : incohérence !

Attention ! Dans ce modèle à profil rectangulaire, τ_0 n'est que la durée de la partie centrale du train d'onde, c'est pour cela que les franges réapparaissent légèrement au-delà !



36-38)
$$t_1 = \frac{d}{c}$$
 Le deuxième maximum est émis en $t = T_0 \to t_2 = T_0 + \frac{d - V_x T_0}{c} \to v = \frac{1}{t_2 - t_1} = \frac{v_0}{1 - V_x / c}$...

39) Le spectre énergétique est **discret** (états liés) car les atomes sont confinés. $m^* \sim 3.\,10^{-25}\,kg$

40 & 41)
$$\frac{d^2 \varphi}{dx^2} + \frac{2m^*}{\hbar^2} \mathcal{E} \varphi(x) = 0$$
 $\varphi(0) = \varphi(L) = 0$ $\Rightarrow \varphi(x) = A \sin\left(\sqrt{\frac{2m^*}{\hbar^2}} \mathcal{E}_n x\right)$ avec $\mathcal{E}_n = \frac{n^2 \pi^2 \hbar^2}{2m^* L^2}$

42)
$$n_1 \sim 10^{21} \rightarrow \frac{\varepsilon_{n_1+1} - \varepsilon_{n_1}}{\varepsilon_{n_1}} = \left(1 + \frac{1}{n_1}\right)^2 - 1 \sim \frac{2}{n_1} \sim 10^{-21}$$
 Le caractère discret n'est plus détectable.

43-46)
$$n(\mathcal{E}) = \sqrt{\frac{\mathcal{E}}{\mathcal{E}_1}} \rightarrow dn = \frac{1}{2\sqrt{\mathcal{E}\mathcal{E}_1}} d\mathcal{E}$$
 $\mathcal{P}(\mathcal{E}) \propto \exp\left(-\frac{\mathcal{E}}{k_B T}\right) \rightarrow f(\mathcal{E}) \propto \frac{1}{\sqrt{\mathcal{E}}} \exp\left(-\frac{\mathcal{E}}{k_B T}\right)$

47) Doit-on répondre ? Vous si, moi non !
$$f(\mathcal{E}) = \frac{1}{\sqrt{\mathcal{E}\pi k_B T_{gaz}}} \exp\left(-\frac{\mathcal{E}}{k_B T_{gaz}}\right)$$

48)
$$\langle \mathcal{E} \rangle = \langle \mathcal{E}_c \rangle = \langle \frac{1}{2} m^* v_x^2 \rangle = \int_0^\infty \mathcal{E} f(\mathcal{E}) \, d\mathcal{E} = \frac{1}{2} k_B T_{gaz}$$

Théorème d'équipartition de l'énergie en mécanique classique

Si l'énergie contient plusieurs termes **quadratiques**, la valeur moyenne de chaque terme est identique. Chaque degré de liberté à énergie quadratique contribue à l'énergie moyenne à hauteur de $\frac{k_BT}{2}$.

[Attention ! Ne pas confondre cette équipartition énergétique avec celle de population si $T\gg T_{gel}$.]

$$u = \sqrt{\langle v_x^2 \rangle} = \sqrt{\frac{k_B T_{gaz}}{m^*}} \sim 2.10^2 \ m. \ s^{-1}$$

49)
$$v_{+} = \frac{v_{0}}{1-u/c}$$
 $v_{-} = \frac{v_{0}}{1+u/c}$ $\Delta v_{DOP} = 2v_{0}\frac{u}{c} \sim 10^{10}~Hz \sim \Delta v_{exp} \gg \Delta v$ naturel (x1000)

En effet, l'élargissement Doppler est beaucoup plus influent que l'élargissement naturel (.ripoll®)