Exercice 1 (Majoration d'erreur : cas à valeurs réelles).

a) Soit $a_1 < a_2 < \dots < a_n$, n réels distincts, et $h : [a_1, a_n] \to \mathbb{R}$, nulle en a_1, a_2, \dots, a_n , de classe \mathscr{C}^{n-1} sur $[a_1, a_n]$ et admettant une dérivée $n^{\text{ième}}$ sur $]a_1, a_n[$ montrer que

$$(\forall x \in [a_1, a_n]) (\exists \zeta \in]a_1, a_n[), h(x) = \frac{(x - a_1)(x - a_2)\dots(x - a_n)}{n!} h^{(n)}(\zeta)$$

Indication : bienvenue dans le monde des fonctions auxiliaires perchées — On fixe un $x \in [a_1, a_n] \setminus \{a_1, \dots, a_n\}$, on fixe A défini par $h(x) = \frac{(x-a_1)(x-a_2)\dots(x-a_n)}{n!}A$ et on considère $\psi : [a_1, a_n] \to \mathbb{R}, t \mapsto h(t) - \frac{(t-a_1)(t-a_2)\dots(t-a_n)}{n!}A$

b) Une application à la méthode des trapèzes : soit $f \in C^2([a,b],\mathbb{R})$ avec a < b dans \mathbb{R} . Soit g l'unique fonction affine telle que f(a) = g(a) et f(b) = g(b). En appliquant le 1) à h = f - g montrer que :

$$\left| \int_{a}^{b} f - (b - a) \frac{f(a) + f(b)}{2} \right| \le M_2 \frac{(b - a)^3}{12}$$

où $M_2 = \sup_{[a,b]} |f''|$.

Exercice 2. Soit I un intervalle de \mathbb{R} , $n \in \mathbb{N}$ et $a_1, \ldots, a_{n+1} \in I$. Soit $f \in \mathcal{C}^n(I, \mathbb{R}^{n+2})$.

- a) On suppose que la famille $(f(a_1), \ldots, f(a_{n+1}))$ est libre. Montrer qu'il existe un $c \in I$ tel que $f^{(n)}(c) \in \text{Vect}(f(a_1), \ldots, f(a_n), f(a_{n+1}))$.
 - b) Interpréter géométriquement le résultat pour n=1

Exercice 3. Soit I un intervalle de \mathbb{R} et $A: I \to M_n(\mathbb{K})$ une fonction dérivable.

- a) Justifier que $t \mapsto \det(A(t))$ est dérivable.
- b) On suppose de plus que pour tout $t \in I$, $\det(A(t)) \neq 0$. En déduire que $t \mapsto A^{-1}(t)$ est dérivable.
- c) En déduire alors que pour tout $t \in I$

$$(A^{-1})'(t) = -A(t)^{-1}.A'(t).A(t)^{-1}$$

Exercice 4 (Fonctions, à valeurs vectorielles, vérifiant l'égalité de la moyenne). Soit E un e.v.n. de dim finie. Trouver les applications $f: \mathbb{R} \to E$ continues par morceaux et telles que

$$\forall a \in \mathbb{R}_{+}^{*}, \quad \forall x \in \mathbb{R}, \quad 2af(x) = \int_{x-a}^{x+a} f(t)dt.$$

Exercice 5 (CNS d'égalité dans l'I.T.I). 1) Montrer que si $f \in \mathcal{C}([a,b],\mathbb{R})$ et $\int_a^b |f| = |\int_a^b f|$ alors f est de signe constant.

2) Soient E un espace euclidien et $f:[a,b] \to E$ une fonction continue. On suppose que

$$\left\| \int_a^b f(t)dt \right\| = \int_a^b \|f(t)\|dt$$

On veut montrer qu'il existe $e \in E$ de norme 1 tel que $f(t) = ||f(t)|| \cdot e$ pour tout $t \in [a, b]$.

- a) Pourquoi le résultat est-il évident si $\int_a^b f(t)dt = 0$? On suppose dans ce qui suit que $\int_a^b f(t)dt \neq 0$.
 - b) On pose alors

$$e_1 = \frac{\int_a^b f(t)dt}{\left\| \int_a^b f(t)dt \right\|} \text{ de sorte que } \int_a^b f(t)dt = \left\| \int_a^b f(t)dt \right\| e_1$$

Montrer le résultat demandé en travaillant dans une b.o.n. (e_1, \ldots, e_n) obtenue en complétant e_1 . **N.B.** Ce résultat s'applique notamment à $E = \mathbb{C}$ avec le module : comment formule-t-on la CNS d'égalité dans ce cas?

Exercice 6 (Approximation numérique de la dérivée en un point : majoration d'erreur indentique dans le cas réel ou vectoriel).

Soit $(E, \| \|)$ un \mathbb{R} -e.v. de dimension finie.

Solit $(E, \| \|)$ un $\mathbb{R}^{-c.v.}$ de dimensional a) Solient $x_0 \in \mathbb{R}$, h > 0 et $f \in C^2([x_0, x_0 + h], E)$. On note $\Delta_h f(x_0) = f(x_0 + h) - f(x_0)$ et $M_2 = \sup_{x \in [x_0, x_0 + h]} \|f''(x)\|$.

Montrer que : $\left\| \frac{\Delta_h f(x_0)}{h} - f'(x_0) \right\| \le \frac{h}{2} M_2$.

b) Soient $x_0 \in \mathbb{R}$, h > 0 et $f \in C^3([x_0 - h, x_0 + h], E)$. Soit $M_3 = \sup_{x \in [x_0 - h, x_0 + h]} ||f^{(3)}(x)||$. On note $\delta_h f(x_0) = f(x_0 + h) - f(x_0 - h)$.

Montrer qu'il existe une constante C que l'on précisera telle que : $\left\| \frac{\delta_h f(x_0)}{2h} - f'(x_0) \right\| \le Ch^2 M_3$.

c) En supposant que les nombres M_3 et M_2 sont du même ordre de grandeur, pour h assez petit, et sous les hypothèses du b), quelle approximation de $f'(x_0)$ préférer?

Exercice 7 (Mini-problème, Retour sur le théorème de division et généralisation de l'exercice 1 aux fonctions à valeurs vectorielles).

Soit $(E, \| \|)$ un \mathbb{R} -e.v. de dimension finie.

- a) Le théorème de la limite de la dérivée se généralise-t-il aux fonctions de $I \subset \mathbb{R}$ dans E?
- b) Le théorème de division : Soit $f \in \mathcal{C}^n(\mathbb{R}, E)$ telle que f(0) = 0 et $g : x \in \mathbb{R}^* \mapsto \frac{f(x)}{x}$.
 - i) Soit $k \in [0, n]$. On pose pour tout $x \in \mathbb{R}$, $\varphi(x) = -\sum_{n=0}^{k-1} (-1)^p \frac{x^p}{p!} f^{(p)}(x) (-1)^k \frac{x^k}{k!} f^{(k)}(0)$. Calculer $\varphi'(x)$ pour tout $x \in \mathbb{R}$.
 - ii) Soit $\varepsilon > 0$. En déduire qu'il existe un $\alpha > 0$ tel que pour tout $x \in \mathbb{R}$;

$$|x| \le \alpha \Rightarrow \|\varphi(x) - \varphi(0)\| \le \varepsilon \frac{|x|^k}{k!}$$

- iii) Montrer que pour tout $x \in \mathbb{R}^*$, $g^{(k-1)}(x) \frac{1}{k} f^{(k)}(0) = \frac{(-1)^k}{x^k} (k-1)! \varphi(x)$.
- iv) Conclure que $g^{(k-1)}(x) \xrightarrow{x \to 0} \frac{1}{k} f^{(k)}(0)$.
- v) En déduire que g se prolonge en une fonction de classe \mathcal{C}^{n-1} sur $\mathbb R$ entier.
- vi) Comment avait-on fait cet exercice de manière beaucoup plus rapide au chapitre I3 (fonctions à valeurs réelles ou complexes dans le cadre du programme)?
- c) On veut généraliser le résultat de l'exercice 1 a), aux fonctions à valeurs vectorielles en prouvant l'énoncé suivant : si $h \in \mathcal{C}^n([a_1, a_n], E)$ et h s'annule en a_1, \dots, a_n et $M_n = \sup_{x \in E} \|h^{(n)}(x)\|$ alors:

$$\forall x \in [a_1, a_n], ||h(x)|| \le \frac{M_n}{n!} |(x - a_1)(x - a_2) \dots (x - a_n)|.$$

Pour cela, on pourra introduire les fonctions g_i suivantes : $g_1(x) = h(x)/(x-a_1)$ pour $x \neq a_1$ et pour tout $p \in [2, n]$, $g_p(x) = \frac{g_{p-1}(x)}{(x - a_p)}$. On montrera avec des calculs très proche du b) et par récurrence que les g_k sont de classe \mathcal{C}^{n-k} sur $[a_1,a_n]$ et que $\|g_k^{n-k}(x)\| \le$ $\frac{n}{n(n-1)\dots(n-(k-1))}$