1 & 2) $\vec{\mu} = I\pi R^2 \vec{e}_z$ Tous les points de la sphère décrivent un cercle, on leur associe une boucle de courant et donc un moment magnétique selon \vec{e}_z si la sphère tourne dans le sens **direct.**

3) D'après l'expression de l'énergie potentielle d'un dipôle $(\mathcal{E}_p = -\vec{\mu}.\vec{B})$, l'unité de μ est bien $J.T^{-1}$.

4 & 5) $\mathcal{E}_p^{min} = -\mu_p B_0$ Equilibre stable avec $\vec{\mu}_p$ et \vec{B}_0 colinéaires et de même sens. $\mathcal{E}_p^{max} = \mu_p B_0$ Equilibre instable avec $\vec{\mu}_p$ et \vec{B}_0 colinéaires et de sens opposés $\rightarrow \Delta \mathcal{E}_p = 1, 8. 10^{-7} eV$ **6)** L'énergie thermique est de l'ordre de $kT \sim 3. 10^{-2} eV \gg \Delta \mathcal{E}_p$ On s'attend à une équipartition.

7) La RMN n'a pas d'impact chimique sur les molécules d'eau.

8 & 9)
$$\mathcal{P} = A \exp\left(-\frac{\varepsilon}{kT}\right) \rightarrow \frac{N_+}{N_-} = \exp\left(-\frac{2\mu B_0}{kT}\right) \sim 1 - \frac{2\mu B_0}{kT} < 1$$

10) Les dipôles dont le moment est dans le même sens que \vec{B}_0 sont les plus nombreux.

11 & 12) $\eta = \frac{1 - \exp\left(-\frac{2\mu B_0}{kT}\right)}{1 + \exp\left(-\frac{2\mu B_0}{kT}\right)} \sim \frac{\mu B_0}{kT} = 3, 2. \, 10^{-6}$ On peut dire qu'il y a équipartition.

13 à 15) $\vec{\mu}_e = -\frac{e}{T}\pi r_B^2 \vec{e}_z = -\frac{evr_B}{2} \vec{e}_z$; $\vec{\sigma}_e = m_e r_B v \vec{e}_z \rightarrow \gamma_e = -\frac{e}{2m_e} = -8, 8.10^{10} s^{-1}. T^{-1}$

16 à 18) En effet, $\gamma_p \ \frac{\hbar}{2} = \mu_p$; $hf = \Delta \mathcal{E}_p = 2\mu_p B_0 = \gamma_p \hbar B_0 \rightarrow f = \frac{\gamma_p B_0}{2\pi} = 42 \ MHz \ (\lambda = 7, 1 \ m)$

19) On applique le T.M.C. au dipôle : $\frac{d\vec{\sigma}}{dt} = \vec{\mu} \wedge \vec{B}_0 \iff \frac{d\vec{\mu}}{dt} = -\gamma \vec{B}_0 \wedge \vec{\mu}$

20 à 22) $\vec{\mu} \cdot \frac{d \vec{\mu}}{dt} = 0$ Et $\vec{e}_z \cdot \frac{d \vec{\mu}}{dt} = 0$ Donc $\|\vec{\mu}\| = cste$ Et $\mu_z = cste$

Précession de $\vec{\mu}$ autour de Oz à la vitesse angulaire ω_0 $(\vec{\omega}_0 = -\gamma \vec{B}_0)$, dans le sens direct pour un électron (sens rétrograde pour un proton).

<u>Figure pour un proton</u>

23 à 26)
$$\vec{M} = (N_{-} - N_{+})\mu_{p}\vec{e}_{z} = \eta N\mu_{p}\vec{e}_{z} = \frac{N\gamma_{p}^{2}\hbar^{2}B_{0}}{4kT}\vec{e}_{z}$$
 Avec $N = \frac{2\rho N_{A}}{m} \sim 7.10^{28} m^{-3}$
27) $B \sim 6.10^{-10} T \ll B_{0}$

28) En présence du champ perturbateur, l'aimantation \vec{M} évolue et son comportement est analysé. En l'absence du champ perturbateur, l'aimantation est constante $(\vec{M} = \vec{M}_0)$ et ne présente aucun intérêt. **29)** Divisons par γ les équations de Bloch. Nous obtenons l'écriture du T.M.C. $\frac{d\vec{\Sigma}}{dt} = \vec{M} \wedge \vec{B}_0 + \vec{C}_r$

Avec
$$\vec{c}_r = -\frac{\sigma_x}{T_2} \vec{e}_x - \frac{\sigma_y}{T_2} \vec{e}_y - \frac{\sigma_z - \sigma_0}{T_1} \vec{e}_z$$

30) Le domaine des radiofréquences est très large, il s'étend de **100** *kHz* à **1** *GHz* environ. Il comprend donc la fréquence de résonnance évaluée à la question 18.

31) Les équations de structure :

$$\begin{aligned} div \, \vec{B}(M,t) &= 0 & \overrightarrow{rot} \, \vec{E}(M,t) &= -\frac{\partial B(M,t)}{\partial t} \\ (\text{Maxwell-Thomson}) & (\text{Maxwell-Faraday}) \\ div \, \vec{E}(M,t) &= \frac{\rho(M,t)}{\varepsilon_0} & \overrightarrow{rot} \, \vec{B}(M,t) &= \mu_0 \vec{j}(M,t) + \mu_0 \varepsilon_0 \frac{\partial \vec{E}(M,t)}{\partial t} \\ (\text{Maxwell-Gauss}) & (\text{Maxwell-Ampère}) \\ \hline{rot} \, \vec{R}(M,t) &\simeq \mu_0 \vec{i}(M,t) \end{aligned}$$

Les équations de liaison aux sources :

Dans l'A.R.Q.S. seule est modifiée la dernière équation :

32) Le théorème d'Ampère dans l'A.R.Q.S. est la forme intégrale de l'équation précédente :

$$c \oint \vec{B} \cdot d\vec{l} = \mu_0 I_{par c}^{enlace}$$

33) La distribution est invariante par translation suivant \vec{u}_{Δ} et par rotation autour de $\Delta : \boldsymbol{B}(\boldsymbol{r})$

Tous les plans perpendiculaires à Δ sont des plans de symétrie pour la distribution, donc ce sont des plans d'antisymétrie pour \vec{B} : $\vec{B} = B(r) \vec{u}_{\Delta}$

Appliquons le théorème d'Ampère sur les contours C_1 et C_2 contenus dans un plan méridien :

$$\oint_{\mathcal{C}_{1,2}} \oint \vec{B} \cdot d\vec{l} = \mu_0 I_{par \, \mathcal{C}_{1,2}}^{enlace} = 0 \quad \Leftrightarrow \quad aB(r) - aB(r') = 0 \quad \Leftrightarrow \quad B(r) = B(r')$$

34) Appliquons le théorème d'Ampère sur le contour C_3 : $aB_{int} - aB_{ext} = \mu_0 nal \iff B_{int} = \mu_0 nI$

35) $\vec{B}_1 = \mu_0 n I_0 (\cos(\Omega t) \vec{e}_x - \sin(\Omega t) \vec{e}_y)$

Ceci est bien un champ tournant à la vitesse angulaire Ω dans le sens horaire et de norme $\mu_0 n I_0$.

36)
$$\vec{B'}_1 = B_1(\cos(\Omega t) \vec{e}_x - \sin(\Omega t) \vec{e}_y) + B_1(\cos(\Omega t) \vec{e}_x + \sin(\Omega t) \vec{e}_y)$$

37 à 39) $\vec{J} = \frac{I_0}{a^2} \vec{e}_{\theta}$ Appliquons le théorème d'Ampère sur un contour C_4 placé en r = 0 et $r' > R_2$: $aB_{r=0} = \mu_0 jS = \mu_0 ja(R_2 - R_1) \iff B_{r=0} = \mu_0 \frac{I_0}{a^2} (R_2 - R_1) = 1 T$ Si $I_0 = 16 A$ **40)** $[\overrightarrow{rot} \overrightarrow{j}] = I.L^{-3}$ et $[\overrightarrow{B}].L^2 = [L].I \rightarrow [\Lambda] = [L]^{-1}.L^{-1}$ L'unité de Λ est $H^{-1}.m^{-1}$ **41 & 42)** $\overrightarrow{rot} (\overrightarrow{rot} \overrightarrow{B}) = -\overrightarrow{\Delta} \overrightarrow{B} \iff \overrightarrow{\Delta} \overrightarrow{B} + \overrightarrow{rot}(\mu_0 \overrightarrow{j}) = \overrightarrow{0} \iff \overrightarrow{\Delta} \overrightarrow{B} - \frac{\overrightarrow{B}}{\delta^2} = \overrightarrow{0}$ Avec $\delta = \frac{1}{\sqrt{\mu_0 \Lambda}}$

43) La distribution est invariante par translation suivant \vec{e}_y et \vec{e}_z : B(x)

44) La continuité de \vec{B} en x = 0 impose que \vec{B} soit dirigé selon $\vec{e}_z \rightarrow \vec{B} = \left(\alpha e^{-\frac{x}{\delta}} + \beta e^{\frac{x}{\delta}}\right) \vec{e}_z$ Mais le champ ne doit pas diverger en $x \rightarrow -\infty$, donc $\alpha = 0$ et finalement $\vec{B} = B_0 e^{\frac{x}{\delta}} \vec{e}_z$

45 à 47) $\vec{J} = \frac{\vec{rot} \vec{B}}{\mu_0} = -\frac{B_0}{\delta\mu_0} e^{\frac{x}{\delta}} \vec{e}_y$ Le paramètre δ représente **la distance caractéristique de pénétration** du champ \vec{B} dans le matériau supraconducteur. A partir de **quelques dixièmes de micromètre**, \vec{B} est nul.

54 à 56) Si on applique un faible champ tournant, l'aimantation restera à peu près selon \vec{e}_z . C'est le cas également si $\Delta \omega \gg |\omega_1|$. Par contre si $\Delta \omega \ll |\omega_1|$ voire $\Delta \omega = 0$, \vec{M} tourne autour de \vec{e}_{x1} en demeurant **perpendiculaire à** \vec{e}_{x1} . A la résonance, le vecteur aimantation balaie **toutes les directions de l'espace**.

57 & 58) A la résonance, \vec{B}_{eff} est selon \vec{e}_{x1} et la vitesse angulaire de précession est $-\omega_1$.

59) Si on note \vec{B}_2 l'autre champ tournant et R_2 le référentiel dans lequel \vec{B}_2 est statique, la même étude que précédemment (sans \vec{B}_1) donne à la résonance : $\left(\frac{d \vec{M}}{dt}\right)_{R_2} = \gamma_p \vec{M} \wedge \left(\frac{\omega_1}{\gamma_p} \vec{e}_{x2} + \frac{2\omega_0}{\gamma_p} \vec{e}_z\right) \sim \vec{M} \wedge 2\omega_0 \vec{e}_z$ La précession s'effectue à peu près autour de \vec{e}_z , si \vec{M} est initialement selon \vec{e}_z , \vec{B}_2 a peu d'influence.

60) La condition devient $\boldsymbol{\omega}(\boldsymbol{z}) = \omega_0(\boldsymbol{z}) = \gamma_p B_0 \boldsymbol{f}(\boldsymbol{z})$, la mono chromaticité n'est plus de mise.

61 & 62)
$$\omega_1 t_{p1} = (2p+1)\frac{\pi}{2} \quad (p \in \mathbb{N}) \rightarrow \theta_1 = \frac{\pi}{2\omega_1}$$
 Et $\omega_1 t_{q2} = (2p+1)\pi \quad (q \in \mathbb{N}) \rightarrow \theta_2 = \frac{\pi}{\omega_1}$

63 & 64) Après le pulse, l'aimantation précesse autour de \vec{B}_0 (\vec{e}_z) à la vitesse angulaire $\omega - \omega_0$ dans R_1 .

65) Après l'impulsion à 90°, l'aimantation transversal M_{\perp} tend vers 0 avec un temps caractéristique T_2 .

66 à 69) A $t = \theta_1$, l'aimantation est transversale ($M_z = 0$), ce n'est pas un état d'équilibre. Puis $M_z \nearrow$ et $M_{\perp} \searrow$ (M_y diminue avec oscillations).

Au-delà de $t = \tau + 2\theta_1$, l'aimantation se redresse $(-\vec{e}_z \ge \vec{e}_z)$, M_{\perp} et donc M_y passent par un maximum.

70) L'aimantation crée un champ B_y variable dont le flux à travers les bobines varie !

71) Ce flux est proportionnel à R^2 et à M_y (donc à B_0), la f.é.m. d'induction est proportionnelle à R^2 et à $\frac{d M_y}{dt}$ (donc à B_0 et à $e^{-((t-\theta_1)/T_2^*)} \sin(\omega_0(t-\theta_1))$. Les propositions **4, 6, 7** et **9** sont exactes.

72) La courbe de l'enveloppe Y(t) correspond à l'analyse faite aux questions 66 à 69.

L'évaluation de T_2 est alors possible, on peut ainsi détecter une tumeur ($T_2 < 100 ms$).