CCMP 2 2021

- 1) La masse volumique du matériau a pour expression $\frac{3M_*}{4\pi R_*^3}$, en multipliant par le volume du marteau on obtient sa masse voisine de ${\bf 10}^6~kg$.
- 2) En évaluant à 2m la variation d'altitude, $\Delta \mathcal{E}_p \sim 2.10^7 J$ Cette variation correspond à l'énergie libérée lors du choc avec les rochers, elle est équivalente à l'énergie dégagée par 20 bâtons de dynamite!
- 3) Pour n>1, $\lambda_{1n}=\frac{hc}{\Delta\mathcal{E}}=\frac{hc}{\mathcal{E}_0}\left(\frac{n^2}{n^2-1}\right)\sim 91\left(\frac{n^2}{n^2-1}\right)$ nm La raie Ly α (n=2) est hors document, mais les raies Ly β (n=3), Ly γ (n=4) et Ly δ (n=5) correspondent bien aux observations.
- 4) Le rapport $\frac{n^2}{n^2-1}$ tend vers 1 lorsque n augmente, l'écart entre les raies est de plus en plus petit.
- 5) L'effet Doppler est la principale cause de cet élargissement. Les atomes d'hydrogène émetteurs n'ont pas tous la même vitesse **radiale** vers le spectromètre, il en résulte une plage fréquentielle perçue et donc une bande de longueur d'onde : $\frac{\delta f}{f} = \frac{\delta \lambda}{\lambda} = \frac{\delta v_x}{c}$ Avec v_x , la vitesse de l'atome dans la direction du spectromètre. Si on assimile la largeur des raies au double de l'écart-type des distributions,

$$\delta v_x \sim 2\sqrt{\langle v_x^2 \rangle - \langle v_x \rangle^2} = 2\sqrt{\langle v_x^2 \rangle} = 2\sqrt{\frac{k_B T}{m_H}} \rightarrow \frac{\delta \lambda}{\lambda} \sim \frac{2}{c}\sqrt{\frac{k_B T}{m_H}}$$

Avec T la température de l'étoile

- **6)** On applique la deuxième loi de Newton à l'électron dans le référentiel du noyau. Il est soumis à la force électrique $\vec{F}=-\frac{e^2}{4\pi\varepsilon_0 r^2}\vec{e}_r \to v_e = \sqrt{\frac{e^2}{4\pi\varepsilon_0 m_e r}} \to \mathcal{E}=\frac{1}{2}m_e v_e^2 \frac{e^2}{4\pi\varepsilon_0 r} = -\frac{e^2}{8\pi\varepsilon_0 r}$ Or $L=m_e r v_e = \sqrt{\frac{m_e r e^2}{4\pi\varepsilon_0}}=n\hbar$ On en déduit que $\mathcal{E}=-\frac{m_e \, e^4}{8\,\varepsilon_0^2\,h^2\,n^2} \to \mathcal{E}_0=\frac{m_e \, e^4}{8\,\varepsilon_0^2\,h^2}$
- 7) La fonction u(x) est proportionnelle à $\frac{x^5}{e^x-1}$, sa dérivée est proportionnelle à $\frac{x^4}{(e^x-1)^2}(e^x(5-x)-5)$ L'équation qui assure un extrémum à u est $e^x=\frac{5}{5-x}$. Si u'(x)=0 , $\frac{du}{d\lambda}=-\frac{hc}{k_BT\lambda^2}u'(x)=0$ aussi !
- **8 & 9)** La solution de l'équation précédente est proche de 5 par valeur inférieure : $x \sim 5$ ($x = 4,965 \dots$) On en déduit la loi de Wien $\lambda_{max}T \sim \frac{hc}{5k_B} \sim 3 \ mm. K$ $\lambda_{max} = 108 \ nm \rightarrow T = 3.10^4 \ K$
- **10)** A la surface de l'étoile, l'énergie d'agitation thermique est de l'ordre de $k_BT\sim 3~eV<11~eV\to$ Le carbone est à l'état **atomique**
- 11) En négligeant la masse des électrons, on a $N_e = \frac{N_{nucléons}}{2} = \frac{M_*}{2m_p}$
- **12 & 13)** La dimension d'une pression est $M.L^{-1}.T^{-2}$ et celle d'une énergie est $M.L^{2}.T^{-2}$ $\rightarrow [P_{e}] = \left((M.L^{2}.T^{-2}).T \right)^{2}.M^{-1}.L^{-5} = M.L^{-1}.T^{-2}$ $\vec{F} = -\frac{gm_{1}m_{2}}{r^{2}}\vec{e}_{r} \rightarrow \mathcal{E}_{p} = -\frac{gm_{1}m_{2}}{r}$
- **14)** $\delta W = -d\mathcal{E}_g = -\frac{3\mathcal{G}M_*^2}{5R_*^2}dR_* = -\frac{3\mathcal{G}M_*^2}{5R_*^2}\frac{dV_*}{4\pi R_*^2}$ Or $\delta W = -P_g dV_* \rightarrow P_g = \frac{3\mathcal{G}M_*^2}{20\pi R_*^4}$
- **15)** A l'équilibre $P_g = P_e \rightarrow \frac{3\mathcal{G}M_*^2}{20\pi R_*^4} = \frac{\pi^{4/3}}{15} \frac{\hbar^2}{m_e} \left(\frac{9M_*}{8\pi R_*^3 m_p}\right)^{5/3} \rightarrow \mathcal{G}M_*^{1/3} R_* = \frac{4\pi^{2/3}}{9} \left(\frac{9}{8m_p}\right)^{5/3} \frac{\hbar^2}{m_e}$ Finalement (!) $R_* = \frac{(9\pi)^{2/3}}{8} \frac{\hbar^2}{\mathcal{G}M_*^{1/3} m_p^{5/3} m_e} \sim 1.10^4 \ km$

- **16)** $N_c = \frac{N_e}{6} = \frac{N_{nucl\acute{e}ons}}{12} = \frac{M_*}{12m_p}$ Chaque cube de côté a contient $8 * \frac{1}{8}$ noyaux, en assimilant le volume du cœur de l'étoile au volume total, on obtient $a^3N_c = \frac{4}{3}\pi R_*^3 \rightarrow a = 2\left(\frac{2\pi m_p}{M_*}\right)^{1/3} R_*$
- 17) On se place en coordonnées sphériques (r,θ,φ) . La distribution étant invariante par rotation selon θ et φ , la norme du champ ne dépend que de r. Tous les plans contenant \overrightarrow{OM} sont des plans de symétrie pour la distribution donc des plans de symétrie pour le champ $\rightarrow \vec{E} = E(r) \ \vec{e}_r$ On applique le théorème de Gauss sur une sphère centrée en θ et de rayon r < a: $4\pi r^2 E(r) = \frac{4\rho\pi r^3}{3\varepsilon_0} \rightarrow E(r) = \frac{\rho r}{3\varepsilon_0} = -\frac{2er}{\varepsilon_0 a^3}$
- 18) La force subie par le noyau est une **force centrale**, le moment cinétique du noyau est constant ce qui entraine la planéité du mouvement. La deuxième loi de Newton nous permet d'écrire $12m_p\ddot{\vec{r}}=-\frac{12e^2}{\varepsilon_0a^3}\vec{r}$

$$\rightarrow \ddot{\vec{r}} + \frac{e^2}{\varepsilon_0 a^3 m_p} \vec{r} = \vec{0} \rightarrow \omega = e \sqrt{\frac{1}{\varepsilon_0 a^3 m_p}}$$

La courbe $\mathcal C$ est **une ellipse** car les coordonnées cartésiennes de M sont $\begin{cases} x(t) = x_0 \cos(\omega t) + \frac{v_{0x}}{\omega} \sin(\omega t) \\ y(t) = y_0 \cos(\omega t) + \frac{v_{0y}}{\omega} \sin(\omega t) \end{cases}$ avec $(x_0$, y_0) les coordonnées initiales et $(v_{0x}$, v_{0y}) les coordonnées de la vitesse initiale.

 $s_0^2 = \frac{1}{2} \left(x_0^2 + y_0^2 + \frac{v_{0x}^2 + v_{0y}^2}{\omega^2} \right) = \frac{1}{2} \left(r_0^2 + \frac{v_0^2}{\omega^2} \right)$ Avec r_0 la distance initiale et v_0 la norme de la vitesse initiale

- **19)** Le potentiel électrique V(r) dans lequel est plongé le noyau est $V(r) = \frac{er^2}{\varepsilon_0 a^3}$ d'après $\vec{E} = -\overrightarrow{grad} V$ Le système est conservatif, $\mathcal{E}_{cl} = \mathcal{E}_{cl0} = 6m_p v_0^2 + \mathcal{E}_{p0} = 6m_p v_0^2 + 6eV(r_0) = \mathbf{12} m_p \boldsymbol{\omega}^2 s_0^2$
- **20 & 21)** D'après la loi de Boltzmann, $p_i = \frac{\exp(-\beta \mathcal{E}_i)}{\sum \exp(-\beta \mathcal{E}_i)} \rightarrow \mathcal{E}_{qs} = \frac{\sum \mathcal{E}_i \exp(-\beta \mathcal{E}_i)}{\sum \exp(-\beta \mathcal{E}_i)}$ Or $\sum \exp(-\beta \mathcal{E}_i) = \exp\left(-\beta \frac{\hbar \omega}{2}\right) \left(\frac{1}{1 \exp(-\beta \hbar \omega)}\right) = \frac{2}{\sinh(\beta \hbar \omega/2)}$ et $\sum \mathcal{E}_i \exp(-\beta \mathcal{E}_i) = -\frac{d}{d\beta} \sum \exp(-\beta \mathcal{E}_i)$ donc $\mathcal{E}_{qs} = \frac{\hbar \omega}{2} \coth\left(\beta \frac{\hbar \omega}{2}\right)$
- **22)** $\mathcal{E}_{qs} = \mathcal{E}_{cl} \rightarrow \hbar \coth\left(\beta \frac{\hbar \omega}{2}\right) = 24 m_p \omega s^2$ Par identification, on obtient $A = \frac{1}{24}$ et $B = \frac{1}{2}$
- **23)** A la surface de la naine blanche, $\coth\left(\frac{\theta}{T}\right) \sim 1 \rightarrow \gamma \sim 3 \% \rightarrow \text{L'état est solide}$

Au cœur de celle-ci, $\coth\left(\frac{\theta}{T_c}\right) \sim \frac{T_c}{\theta} \to \gamma \sim 13 \% \to \text{L'état est liquide}$