Banque CCINP: Ex. 20, 21, 22, 23, 24.

Rayon de convergence

Exercice 1. Déterminer le rayon de CV des séries entières suivantes :

a)
$$\sum \frac{n^2+1}{3^n} z^n.$$

d)
$$\sum \left(\sum_{k=n+1}^{+\infty} \frac{1}{(k+1)^2}\right) z^n$$
.

b)
$$\sum e^{-n^2} z^n$$
.

e)
$$\sum \frac{\cos(n)}{n^{\alpha}} z^n$$
.

c)
$$\sum \ln(n!)z^n$$
.

f)
$$\sum \tan(n\pi/11)z^n$$

Exercice 2 (Série à exposants lacunaires). Quel est le rayon de convergence de $\sum n!z^{n^2}$.

Méthode pour ces séries : Appliquer d'Alembert pour les séries numériques à $\sum u_n$ où $u_n = n!z^{n^2}$.

Exercice 3 (Cas où a_n est défini par une intégrale). a) Rayon de CV de $\sum a_n z^n$ si $a_n = \int_{-\infty}^{2n} \frac{e^t}{t} dt$.

b) Etude de la convergence de $\sum a_n x^n$ pour x au bord de l'intervalle de convergence.

Exercice 4. On dit que deux série entières $\sum a_n z^n$ et $\sum b_n z^n$ ont des ensembles d'indices disjoints ssi pour tout $n \in \mathbb{N}$, $a_n = 0$ ou $b_n = 0$. On note R_a (resp. R_b) le rayon de CV de la première (resp. de la

Montrer que la série $\sum (a_n + b_n)z^n$ a pour rayon de CV min (R_a, R_b) .

Fonctions sommes de séries entières

Exercice 5 (Exemple de base, (un peu trop particulier néanmoins)).

Soit
$$f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n}$$
 pour tout $x \in]-1,1[$.

- a) Justifier que f est bien définie et est \mathcal{C}^{∞} sur] 1,1[
- b) Justifier que f est continue en -1.
- c) Le prolongement est-il dérivable en -1?

Exercice 6. >[Comportement au bord, cas où tous les termes sont positfs]Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels positifs. Soit $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ de rayon de convergence 1 et telle que $\sum a_n$ diverge.

Que dire du comportement de f(x) quand $x \to 1$?

Exercice 7. On fixe un nombre R > 0. Montrer que pour n assez grand, les zéros du polynôme $P_n(z)$ = $1 + \frac{z}{1!} + \dots + \frac{z^n}{n!}$ sont tous de module supérieur à R.

Exercice 8. Soit $\sum a_n x^n$ une série entière de rayon de convergence R > 0. On conviendra, si $R = +\infty$, que

- a) Montrer que la série entière $\sum_{n=1}^{\infty} x^n$ admet un rayon de convergence infini.
- b) On note $f(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n!} x^n$.

On note $L(f)(x) = \int_0^{+\infty} f(t)e^{-tx}dt$ la transformée de Laplace de f.

Montrer que pour tout x > 1/R, L(f)(x) est bien définie puis que $L(f)(x) = \frac{1}{x} \sum_{n=0}^{+\infty} \frac{a_n}{x^n}$

Remarque 1 : la même formule se réécrit : $\forall x \in]-R, R[, \int_0^{+\infty} f(ux)e^{-u}du = \sum_{n=0}^{+\infty} a_n x^n.$

c) En déduire une expression simple de L(f) pour le sinus cardinal $f: x \mapsto \frac{\sin(x)}{x}$

Calcul de sommes de séries entières

Exercice 9 (En découpant pour se ramener à reconnaître des D.S.E. de fonctions usuelles).

- a) Calculer le rayon de convergence et la somme de $\sum \frac{x^n}{n(n+1)}$. b) Calculer le rayon de convergence et la somme de $\sum \frac{2 \operatorname{sh}(n)}{n(n+1)} x^n$.

Exercice 10 (En trouvant une E.D. vérifiée par la fonction...). Calculer $\sum_{n=0}^{+\infty} \frac{(2n+1)!}{(n!)^2} x^{2n}$ pour les x réels pour lesquelles cette somme est bien définie.

Développement en série entière

Exercice 11. a) Montrer que $f: x \mapsto \frac{1}{\sqrt{1-x^2}}$ est D.S.E. sur l'intervalle] – 1,1[et expliciter ce développement.

b) En déduire que la fonction arcsin est D.S.E. sur l'intervalle] – 1,1[et expliciter son développement.

Exercice 12. Développer la fonction $f: x \mapsto \sqrt{\frac{1+x}{1-x}}$ en série entière, sur un voisinage de 0 à préciser. Pour éviter un produit de Cauchy, on pourra transformer l'expression de f avec la quantité conjuguée

Exercice 13. D.S.E. de $f: x \mapsto \cos(x) \operatorname{ch}(x)$ si possible de deux manières différentes (avec et sans produit de Cauchy).

Exercice 14. Déterminer le développement en série entière en 0 de la fonction f définie par f(x) = $e^{-\frac{x^2}{2}} \int_{a}^{x} e^{\frac{t^2}{2}} dt$ en considérant une équation différentielle vérifiée par f.

Exercice 15. a) Calculer explicitement, pour $(n,p) \in \mathbb{N}^2$, $I_{n,p} = \int_0^1 t^n (\ln(t))^p dt$.

b) Soit $f: x \mapsto \int_0^1 t^{xt} dt$. Montrer que f est D.S.E. au voisinage de 0 et expliciter ce développement.

Exercice 16 (Démonstration du théorème d'Abel radial et un peu plus). 1) Dans cette question on va démontrer le

Théorème de convergence uniforme radiale : On considère $(a_n) \in \mathbb{C}^{\mathbb{N}}$ telle que $\sum a_n z^n$ soit de rayon de convergence R > 0.

On suppose que la série numérique $\sum a_n R^n$ converge (pas forcément absolument!). On pose pour tout $n \in \mathbb{N}$, $u_n : [0, R] \to \mathbb{C}$, $x \mapsto a_n x^n$. On sait que $\sum u_n$ CVS sur [0, R]. En fait : $\sum u_n$ CVU sur [0, R].

a) Justifier qu'il suffit de démontrer ce théorème dans le cas où R=1.

On se place donc dans les hypothèse du 1) avec R = 1.

b) Pour tout $n \in \mathbb{N}$ et tout $x \in [0,1]$ on pose $\rho_n(x) = \sum_{k=n+1}^{+\infty} a_k x^k$ et $r_n = \rho_n(1) = \sum_{k=n+1}^{+\infty} a_k$. La transformation d'Abel (I.P.P. discrète) : montrer que pour tout $x \in [0,1]$ et tout $n \in \mathbb{N}$:

$$\sum_{k=n+1}^{+\infty} a_k x^k = r_n x^{n+1} + \sum_{k=n+1}^{+\infty} r_k (x^{k+1} - x^k).$$

Indication - Pour vraiment comprendre le processus d'I.P.P. discrète et prouver cette égalité de gauche à droite, penser à écrire $a_k = r_{k-1} - r_k$.

c) En déduire que si on note $\varepsilon_n\coloneqq\sup_{k\geq n}|r_k|,$ on a :

$$\forall x \in [0,1], \mid \sum_{k=n+1} a_k x^k \mid \le 2\varepsilon_n$$

- d) Conclure pour la convergence uniforme annoncée.
- 2) Déduire du théorème du 1) le théorème de continuité du cours.