DEVOIR SURVEILLÉ 3 (4H)

Les calculatrices sont interdites.

Problème 1 : suites d'itérées par une application linéaire

1) Un premier exemple : on considère les trois suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ définies par leur premier terme

$$u_0 = -1$$
, $v_0 = 2$, $w_0 = -1$

et par les relations de récurrence

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = -\frac{1}{4} (3u_n - v_n + w_n) \\ v_{n+1} = -\frac{1}{2} (u_n + w_n) \\ w_{n+1} = \frac{1}{4} (u_n - v_n - w_n). \end{cases}$$

a) Déterminer une matrice $M \in \mathcal{M}_3(\mathbb{R})$ telle qu'en posant $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$, on ait

$$\forall n \in \mathbb{N}, \quad X_{n+1} = MX_n.$$

- b) Justifier l'existence d'une matrice diagonale D et d'une matrice inversible P telles que $D=P^{-1}MP$ et préciser D et P.
- c) En déduire que les suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent et déterminer la valeur de leur limite.

Notations : Dans la suite de cette partie, on suppose que E est un \mathbb{K} -espace vectoriel de dimension infinie ou de dimension finie $n \geq 2$.

On fixe un vecteur a non nul de E ainsi qu'une forme linéaire u sur E. On considère l'application linéaire h définie sur E par

$$\forall x \in E, \quad h(x) = u(a)x - u(x)a$$

et on supposera $u(a) \neq 0$.

- 2) a) Démontrer que Ker h est une droite vectorielle à préciser.
 - b) Démontrer que $\operatorname{Im} h$ est un hyperplan de E à préciser.
- a) L'endomorphisme h est-il diagonalisable?
 - b) Déterminer le polynôme minimal de h.
 - c) Démontrer, pour tout $p \in \mathbb{N}^*$, une relation simple entre h^p et h.
- 4) On suppose que $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et que l'espace vectoriel E est muni d'une norme $\| \|$ et l'on suppose d'autre part que |u(a)| < 1. Montrer que

$$\forall x \in E, \|h^p(x)\| \underset{n \to +\infty}{\longrightarrow} 0.$$

- 5) Applications:
 - a) Soit f une fonction définie et continue sur $[0,\pi]$, à valeurs réelles. On considère la suite de fonctions $(f_p)_{p\in\mathbb{N}}$ définie par $f_0=f$ et pour tout $p\in\mathbb{N}$ par

$$\forall t \in [0, \pi], \quad f_{p+1}(t) = \frac{2}{3} f_p(t) - \sin(3t) \int_0^{\pi} f_p(s) ds.$$

Démontrer que la suite (f_p) converge simplement vers la fonction nulle sur $[0,\pi]$. La convergence est-elle uniforme?

b) En considérant $E = \mathbb{R}^3$, le vecteur $a = (\frac{1}{4}, \frac{1}{2}, -\frac{1}{4})$ et la forme linéaire $h : (x, y, z) \mapsto x - y + z$, retrouver les limites des suites $(u_n), (v_n)$ et (w_n) de la question 1.

1

Problème 2 : propriétés du rayon spectral et suites (A^k)

Définition : Soit $A \in M_n(\mathbb{C})$. Le rayon spectral de A noté $\rho(A)$ est défini par $\rho(A) = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$, où $\operatorname{Sp}(A)$ est l'ensemble des valeurs propres de A.

Convention de notation : Si on fixe une norme $\| \|$ sur $E := M_{n,1}(\mathbb{C})$ alors pour tout $A \in M_n(\mathbb{C})$, on note aussi $\|A\|$ la norme matricielle subordonnée de A, définie par : $\|A\| = \sup_{X \in E, \|X\| = 1} \|AX\|$.

1) Pour tout
$$X \in M_{n,1}(\mathbb{C})$$
, avec $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, on note $||X||_{\infty} = \max_{i \in [\![1,n]\!]} |x_i|$.

Montrer que pour tout $A \in M_n(\mathbb{C})$, $||A||_{\infty} \leq \max_{i \in [\![1,n]\!]} \sum_{j=1}^n |a_{i,j}|$. Pour la suite, on admet *l'égalité*:

$$\forall A \in M_n(\mathbb{C}), \ ||A||_{\infty} = \max_{i \in [1,n]} \sum_{j=1}^n |a_{i,j}|$$
 (1)

2) a) Montrer que pour toute norme matricielle subordonnée $\|$ $\|$ et pour tout $A \in M_n(\mathbb{C})$

$$\rho(A) \le ||A||. \tag{2}$$

- b) Montrer que l'inégalité du a) peut être stricte.
- 3) On considère la norme $\| \|_{\infty}$ sur $E = M_{n,1}(\mathbb{C})$ et une matrice $P \in GL_n(\mathbb{C})$.
 - a) Montrer que l'application $E \to \mathbb{R}^+$, $X \mapsto ||X||_P := ||P^{-1}X||_{\infty}$ est une norme sur E.
 - b) Montrer que la norme matricielle subordonnée à $\| \|_P$ est reliée à la norme matricielle surbordonnée à $\| \|_{\infty}$ par la relation :

$$\forall \ A \in M_n(\mathbb{C}), \ \|A\|_P = \|P^{-1}AP\|_{\infty} \tag{3}$$

4) Dans cette question, on fixe une matrice $A \in M_n(\mathbb{C})$ et on veut montrer que pour tout $\varepsilon > 0$, il existe une norme matricielle subordonnée $\| \cdot \|$ telle que :

$$||A|| \le \rho(A) + \varepsilon \tag{4}$$

$$\text{a) Soit } \delta > 0, \text{ et } D_{\delta} = \left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & \delta & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \delta^{n-1} \end{array} \right), \text{ calculer } D_{\delta}^{-1}AD_{\delta}.$$

b) Soit $\varepsilon > 0$. Montrer qu'il existe une matrice $P_{\varepsilon} \in GL_n(\mathbb{C})$ telle que la matrice $T_{\varepsilon} = P_{\varepsilon}^{-1}AP_{\varepsilon}$ soit triangulaire supérieure avec, en plus, en notant $T_{\varepsilon} = (t_{ij})_{1 \leq i,j \leq n}$, la propriété :

$$\max_{1 \le i \le n-1} \sum_{j=i+1}^{n} |t_{ij}| < \varepsilon.$$

- c) En déduire (4) en considérant $||A||_{P_{\varepsilon}}$.
- 5) Quatre premières conditions équivalentes : Soit $A \in M_n(\mathbb{C})$. A l'aide de ce qui précède montrer que les quatre conditions suivantes sont équivalentes :
 - (i) $A^k \xrightarrow[k \to +\infty]{} 0$
 - (ii) pour tout $X_0 \in E$, la suite (X_k) définie par $\forall k \in \mathbb{N}, X_{k+1} = AX_k$ converge vers zéro,
 - (iii) $\rho(A) < 1$
 - (iv) il existe au moins une norme matricielle subordonnée telle que ||A|| < 1.
- 6) Deux autres conditions équivalentes : On considère les conditions :
 - (v) La matrice $I_n A$ est inversible, et la série $\sum A^k$ converge avec $\sum_{k=0}^{+\infty} A^k = (I_n A)^{-1}$.
 - (vi) La série $\sum A^k$ converge.

a) Montrer: $(vi) \Rightarrow (i)$

b) Montrer: (iii) \Rightarrow (v).

Comme l'implication $(v) \Rightarrow (vi)$ est évidente, on a montré l'équivalence de toutes ces propriétés. Toutefois, on pourrait souhaiter un chemin plus court pour prouver que $(vi) \Rightarrow (v)$:

c) Montrer que (vi) \Rightarrow (v) en partant de l'égalité $(I_n - A)(\sum_{k=0}^p A^k) = I_n - A^{p+1}$ et en justifiant que $GL_n(\mathbb{C})$ est un ouvert de $M_n(\mathbb{C})$.

7) Application à une méthode itérative de résolution des systèmes linéaires

Étant donné un système linéaire AX = Y de n équations à n inconnues, écrit matriciellement, où $A \in GL_n(\mathbb{C})$ et $Y \in E$ sont données et on cherche $X \in E$, on veut construire une suite $(X_k)_{k \in \mathbb{N}}$ d'éléments de E qui va converger vers la solution X de ce système, le calcul de chaque X_k étant plus simple que la résolution directe du système.

Pour ce faire, on va choisir une écriture de la matrice A sous la forme A = M - N, où $M, N \in M_n(\mathbb{C})$ et M est facilement inversible (voir un exemple ci-dessous) et la résolution de AX = Y est ramenée au problème de point fixe qui consiste à trouver $X \in E$ solution de l'équation :

$$X = M^{-1}NX + M^{-1}Y (5)$$

c'est-à-dire point fixe de l'application $f: E \to E, X \mapsto M^{-1}NX + M^{-1}Y$.

On fixe donc un $X_0 \in E$ arbitraire et on considère la suite $(X_k) \in E^{\mathbb{N}}$ définie par :

$$\forall k \in \mathbb{N}, X_{k+1} = f(X_k).$$

- a) Justifier que si la suite (X_k) converge dans E alors elle converge vers l'unique X vérifiant (5) et que ce X est l'unique solution du système AX = Y.
- b) Montrer que la suite (X_k) converge dans E si, et seulement si, $\rho(M^{-1}N) < 1$.
- c) En pratique le calcul du rayon spectral n'est pas aisé. Montrer que s'il existe une norme subordonnée telle que $\|M^{-1}N\| < 1$ alors la suite (X_k) converge.
- d) Quel test d'arrêt proposeriez-vous si vous vouliez implémenter le calcul des (X_k) ?
- e) L'exemple de la méthode de Jacobi : on suppose ici que pour tout $i \in [1, n]$, $a_{i,i} \neq 0$ et on prend $M = \text{diag}(a_{1,1}, \dots, a_{n,n})$. On applique ici cette méthode au cas où, en outre, A est à diagonale strictement dominante c'est-à-dire que pour tout $i \in [1, n]$,

$$|a_{i,i}| > \sum_{j \neq i} |a_{i,j}|.$$

Montrer que dans ce cas :

- (i) la matrice A est bien inversible,
- (ii) la suite associée (X_k) à cette méthode, avec ce choix de $M = \text{diag}(a_{1,1}, \ldots, a_{n,n})$, converge.

8) Une formule donnant le rayon spectral :

a) Soit $\| \|$ une norme matricielle subordonnée, soit $A \in M_n(\mathbb{C})$ et $\varepsilon > 0$.

On pose
$$A_{\varepsilon} = \frac{1}{\rho(A) + \varepsilon} A$$
.

Montrer qu'il existe un $k_{\varepsilon} \in \mathbb{N}$ tel que $\forall k \geq k_{\varepsilon}, ||A_{\varepsilon}^{k}|| < 1$.

b) En déduire que : $\forall k \geq k_{\varepsilon}, \ \rho(A) \leq ||A^k||^{1/k} \leq \rho(A) + \varepsilon$.

On vient de montrer que, pour une norme matricielle subordonnée, on a l'égalité :

$$\rho(A) = \lim_{k \to +\infty} ||A^k||^{1/k}.$$
 (6)

c) Montrer que ce résultat reste vrai en remplaçant $\| \|$ par une norme quelconque sur $M_n(\mathbb{C})$ (qui n'est pas nécessairement une norme d'algèbre) et qu'on notera $\| \|_1$ par exemple.

Remarque : cette formule permet d'évaluer des rayons spectraux de manière utile par exemple pour la méthode du 7).