D.M. 3: solution

1 Un ordre sur les projecteurs

- 1) a) Montrons que C(f) est un s.e.v. de $\mathcal{L}(E)$.
 - (i) C(f) contient l'application $0 \in \mathcal{L}(E)$ de manière évidente
 - (ii) Soit $(\lambda_1, \lambda_2) \in \mathbb{K}^2$ et $(g_1, g_2) \in C(f)^2$.

Alors pour tout $f \in S$, par bilinéarité de la composition : $(\lambda_1 g_1 + \lambda_2 g_2) \circ f = \lambda_1 (g_1 \circ f) + \lambda_2 (g_2 \circ f) = \lambda_1 (f \circ g_1) + \lambda_2 (f \circ g_2)$ car g_1 et g_2 sont dans S.

En regroupant, on obtient bien que $(\lambda_1 g_1 + \lambda_2 g_2) \circ f = f \circ (\lambda_1 g_1 + \lambda_2 g_2)$.

Donc $(\lambda_1 g_1 + \lambda_2 g_2) \in C(f)$.

Avec (i) et (ii) on a montré que C(f) est un s.e.v. de $\mathcal{L}(E)$.

- b) Montrons que C(f) est un sous-anneau de $\mathcal{L}(E)$.
- (i) Comme on sait déjà que C(f) est un s.e.v. de $\mathcal{L}(E)$, en part. c'est un sous-groupe de $(\mathcal{L}(E), +)$.
- (ii) On sait que : $id_E \in C(f)$.
- (iii) Reste à montrer que C(f) est stable par \circ :

Soit $(g_1, g_2) \in C(f)^2$. Soit $f \in S$.

Alors $(g_1 \circ g_2) \circ f = g_1 \circ (g_2 \circ f) \stackrel{(1)}{=} g_1 \circ (f \circ g_2) = (g_1 \circ f) \circ g_2 \stackrel{(2)}{=} (f \circ g_1) \circ g_2 = f \circ (g_1 \circ g_2)$. Notons que (1) et (2) sont vraies car prop. $g_1 \in C(f)$ et $g_2 \in C(f)$.

D'où la conclusion $g_1 \circ g_2 \in C(f)$.

Avec (i), (ii), (iii), on a montré que C(f) est un sous-anneau de $(\mathcal{L}(E), +, \circ)$.

Au total : C(f) est une sous-algèbre de $(\mathcal{L}(E), +, \circ, \cdot)$.

- 2) (i) Pour montrer que p est un projecteur, il suffit de montrer que $A^2 = A$. Par exemple pour la première entrée de A^2 on a $1/9(2^2+0\times1+(-2)\times(-1)+0)=1/9(4+2)=2/3$ qui est bien la première entrée de A. On calcule ainsi A^2 et on voit que $A^2 = A$ et donc $p \in \mathcal{P}$.
 - (ii) Pour déterminer une base de Im(p):

En notant C_i les colonnes de la matrice, on voit que $C_4 = 0$ et $C_3 = -C_1$.

Donc en notant $\mathcal{B}_0 = (e_1, e_2, e_3, e_4)$, on sait alors que $\operatorname{Im} p = \operatorname{Vect}(p(e_1), p(e_2), p(e_3), p(e_4)) = \operatorname{Vect}(p(e_1), p(e_2))$ et ces deux vecteurs $p(e_1)$ et $p(e_2)$ sont indépendants (colonnes non proportionnelles). Donc $\operatorname{Im}(p)$ admet comme base $(\varepsilon_1, \varepsilon_2)$ où $\varepsilon_1 = (2, 0, -1, 0)$ et $\varepsilon_2 = (1, 3, 1, 0)$.

(iii) Pour ker p. Avec les colonnes, on a $p(e_4) = 0$ et $p(e_3) = -p(e_1)$ i.e. $p(e_3 + e_1) = 0$.

Cela fournit donc deux vecteurs indépendants e_4 et $e_3 + e_1$ dans ker p. Comme par théorème du rang, dim ker p = 4 - 2 = 2, on sait que $(e_1 + e_3, e_4)$ est une base de ker p

- 3) Le sens \Rightarrow n'utilise pas le fait que p est un projecteur et est un résultat de cours.
- 4) a) Par le 3), les éléments de C(p) sont exactement les f tels que $\ker(p)$ et $\operatorname{Im}(p)$ sont stables par f. Cela équivaut à dire que leur matrice dans la base $\mathcal B$ est de la forme :

$$\begin{pmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{pmatrix}$$
 où les * désignent à chaque fois un nombre quelconque.

Pour une matrice
$$M=(m_{i,j})\in M_4(\mathbb{R})$$
 quel
conque $MP=\begin{pmatrix} m_{1,1} & m_{1,2} & 0 & 0\\ m_{2,1} & m_{2,2} & 0 & 0\\ m_{3,1} & m_{3,2} & 0 & 0\\ m_{4,1} & m_{4,2} & 0 & 0 \end{pmatrix}$ et $PM=(m_{1,j})$

1

$$\begin{pmatrix} m_{1,1} & m_{1,2} & m_{1,3} & m_{1,4} \\ m_{2,1} & m_{2,2} & m_{2,3} & m_{2,4} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \text{ Donc}$$

$$MP = PM \Leftrightarrow m_{4,1} = m_{4,2} = m_{3,1} = m_{3,2} = m_{1,3} = m_{1,4} = m_{2,3} = m_{2,4} = 0$$

Ceci équivaut bien à dire que M est de la forme $\begin{pmatrix} * & * & 0 & 0 \\ * & * & 0 & 0 \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{pmatrix}$ donnée au a).

- 5) a) On veut montrer que ≤ est réflexive, antisymétrique, transitive.
 - (i) Réflexivité : soit $p \in \mathcal{P}$. On veut montrer que $p \leq p$. Or la relation $p \leq p$ équivaut à $p \circ p = p$ ce qui est vrai car p est un projecteur.
 - (ii) Antisymétrie : soit $(p,q) \in \mathcal{P}^2$ tels que $p \le q$ et $q \le p$. On a donc $p \circ q = q \circ p = p$ et $p \circ q = q \circ p = q$ donc p = q.
 - (iii) Transitivité : soit $(p, q, r) \in \mathcal{P}^3$ tels que $p \le q$ et $q \le r$. On a donc $p \circ q = p$ (1), $q \circ p = p$ (2), $q \circ r = q$ (3), $r \circ q = q$ (4). On veut montrer que $p \circ r = p$ (5), et $r \circ p = p$ (6).
 - Or en composant par r à droite dans (1), on a : $p \circ q \circ r = p \circ r$. Avec (3) dans le premier membre de cette égalité, on obtient $p \circ q = p \circ r$. Et de nouveau avec (1), on obtient finalement $p = p \circ r$ ce qui est bien (5).
 - En composant par r à gauche dans (2), on a : $r \circ q \circ p = r \circ p$. Dans le premier membre de cette égalité, avec (4) on obtient $q \circ p = r \circ p$ puis avec (2), finalement $p = r \circ p$ ce qui est (6).
 - b) Il suffit de trouver deux projecteurs p et q non nuls tous les deux tels que $p \circ q = q \circ p = 0$ Pour cela, on choisit une décomposition de E en somme directe de deux sous-espaces $E = E_1 \oplus E_2$ avec $E_1 \neq \{0\}$ et $E_2 \neq \{0\}$ et p le projecteur sur E_1 parallèlement à E_2 et q le projecteur sur E_2 parallèlement à E_1 .

On a alors bien $p \circ q = q \circ p = 0$ et $p \neq 0$, $q \neq 0$.

6) Avec $(p \circ q) \circ (p \circ q) = p \circ q \circ q \circ p = p \circ q^2 \circ p = p \circ q \circ p = p \circ q \circ q = p \circ q$ on a bien $p \circ q$ projecteur. Pour l'image : on a $\operatorname{Im}(p \circ q) \subset \operatorname{Im} p$ et $\operatorname{Im}(q \circ p) \subset \operatorname{Im} q$. Donc ici en posant $r = p \circ q = q \circ p$, on a $\operatorname{Im} r \subset \operatorname{Im} p \cap \operatorname{Im} q$.

Mais réciproquement si $x \in \operatorname{Im} p \cap \operatorname{Im} q = \operatorname{Fix} p \cap \operatorname{Fix} q$, on a $p \circ q(x) = x$ donc $x \in \operatorname{Fix}(p \circ q) = \operatorname{Im} p \circ q$.

Donc on a montré que $\operatorname{Im}(p \circ q) = \operatorname{Im} p \cap \operatorname{Im} q$

Pour le ker : on a $\ker p \subset \ker(q \circ p)$ et $\ker q \subset \ker(p \circ q)$, donc ici pour $r = p \circ q = q \circ p$, on a $\ker p + \ker q \subset \ker(r)$.

Mais réciproquement, si $x \in \ker r$, on le décompose en $x = x_1 + x_2$ avec $x_1 \in \ker p$ et $x_2 \in \operatorname{Fix} p$ alors $p(x) = x_2$ et $q \circ p(x) = 0$ donc $q(x_2) = 0$ donc $x_2 \in \ker q$. Donc $x = x_1 + x_2 \in \ker p + \ker q$. On a donc montrer que $\ker(p \circ q) = \ker p + \ker q$

7) a) Sens \Rightarrow : on a $p \le q$ et donc $p \circ q = p$ (1).

Avec la question précédente, comme $p\circ q=q\circ p,$ on sait que $p\circ q$ est un projecteur de noyau $\ker p+\ker q.$

Avec (1) on a alors $\ker p + \ker q = \ker p$ ce qui montre bien que $\ker q \subset \ker p$.

Bien sûr, on peut aussi faire une preuve indépendante de la question précédente :

Soit $x \in \ker q$. Alors q(x) = 0 donc p(q(x)) = p(0) = 0 et avec (1), on a p(x) = 0 donc $x \in \ker p$. On a bien montré l'inclusion $\ker q \subset \ker p$.

Sens \Rightarrow : on a ker $q \in \ker p$.

Soit $x \in E$. Comme q est un projecteur, on sait que $E = \ker q \oplus Fix(q)$ et on écrit $x = x_K + x_I$ avec $x_K \in \ker(q)$ et $x_I \in Fix(q)$.

Alors $q(x) = x_I$ et donc $p(q(x)) = p(x_I)$ (*).

D'autre part par linéarité p, $p(x) = p(x_K) + p(x_I)$ et comme $x_K \in \ker q \subset \ker p$, on en déduit que $p(x) = p(x_I)$ (**).

Avec (**) et (*), on a $p \circ q = p$ et comme p et q commutent par hyp. on a bien $p \leq q$.

b) Sens \Leftarrow : on a $p \le q$ et donc $q \circ p = p$ (2). Soit $y \in \text{Im } p$. On a un $x \in E$ tel que y = p(x). Avec (2), on a y = q(p(x)) donc y = q(z) donc $y \in \text{Im } q$. On a bien montré l'inclusion $\text{Im } p \subset \text{Im } q$.

Sens \Rightarrow : on a Im $p \in \text{Im } q$, c'est-à-dire, comme p et q sont des projecteurs $Fix(p) \in Fix(q)$.

Soit $x \in E$. Comme p est un projecteur, on sait que $E = \ker p \oplus Fix(p)$ et on écrit $x = x_K + x_I$ avec $x_K \in \ker(p)$ et $x_I \in Fix(p)$

Alors $p(x) = x_I$ (*) et donc $q(p(x)) = q(x_I)$. Mais comme $Fix(p) \subset Fix(q)$, on a aussi $q(x_I) = x_I$.

Ainsi $q(p(x)) = x_I$ (**) et donc avec (*) et (**) on a : q(p(x)) = p(x).

On a donc $q \circ p = p$ et comme p et q commutent par hyp. on a bien $p \leq q$.

- a) Notons $r = p + q p \circ q$. Alors comme p et q commutent et qu'on a vu que le commutant était stable par \circ tous les termes de la somme commutent entre eux, $r^2 = (p + q p \circ q) \circ (p + q p \circ q) = p^2 + q^2 + (p \circ q)^2 + 2p \circ q 2p \circ (p \circ q) 2q \circ (p \circ q)$.

 Avec $p^2 = p$, $q^2 = q$ et les commutations, on obtient $r^2 = p + q + 2p \circ q 2p \circ q 2p \circ q = r$
 - donc $r \in \mathcal{P}$. b) On veut montrer que:
 - (i) r est un majorant de p et q,
 - (ii) tout majorant s de p et q vérifie $r \leq s$.
 - (iii) $\operatorname{Im}(r) = \operatorname{Im}(p) + \operatorname{Im}(s)$.
 - Pour le (i) (et une partie du (iii)), sachant que p et q commutent, avec le 1) on sait que r commute aussi à p et q, et donc par 6) b) il suffit de montrer que $\operatorname{Im}(p) \subset \operatorname{Im}(r)$ (1) et $\operatorname{Im}(q) \subset \operatorname{Im}(r)$ (2).

Comme les images sont les s.e.v. fixes : soit $y \in \text{Im}(p) = Fix(p)$, on a p(y) = y et $r(y) = y + q(y) - (q \circ p)(y) = y + q(y) - q(y) = y$ donc $y \in Fix(r)$.

Comme la déf. de r est symétrique en p,q, on a aussi (2) en échangeant les rôles

Ainsi avec 6.b) on sait que r est un majorant de $\{p,q\}$ i.e. notre (i)

• Pour le (ii) : soit s un majorant de $\{p,q\}$, on veut montrer que $r \le s$ autrement dit que $r \circ s = s \circ r = r$.

Comme s commute à p et q, on sait (cf. 1)) que s commute à $r = p + q - p \circ q$.

Si on considère par exemple $s \circ (p+q-p \circ q) = s \circ p + s \circ q - s \circ p \circ q$, comme $s \circ p = p$ et $s \circ q = q$, on obtient :

$$s\circ r=p+q-p\circ q=r$$

D'où le (ii).

• Pour le (iii), on a déjà montré pour le (i) que $\operatorname{Im}(p) \subset \operatorname{Im}(r)$ (1) et $\operatorname{Im}(q) \subset \operatorname{Im}(r)$ (2) et donc (comme $\operatorname{Im} r$ est un s.e.v.) on a l'inclusion : $\operatorname{Im}(p) + \operatorname{Im}(q) \subset \operatorname{Im}(r)$. Réciproquement : si $y \in \operatorname{Im}(r)$, on a un $x \in E$ tel que y = p(x) + q(x) - p(q(x)) = p(x - q(x)) + q(x) avec $p(x - q(x)) \in \operatorname{Im} p$ et $q(x) \in \operatorname{Im}(q)$ donc $y \in \operatorname{Im}(p) + \operatorname{Im}(q)$, d'où l'autre inclusion $\operatorname{Im}(r) \subset \operatorname{Im}(p) + \operatorname{Im}(q)$.

On a bien montré que Im(r) = Im(p) + Im(q).

Exercice supplémentaire : Que dire de ker(r)?

$\mathbf{2}$ Un détour par les formes linéaires

a) On considère l'application $\mathrm{Mat}_{\mathcal{B}}: \mathcal{L}(E,\mathbb{K}) \to M_{1,n}(\mathbb{K})$ qui à toute forme linéaire φ associe sa matrice $(\varphi(e_1)...\varphi(e_n))$ dans la base \mathcal{B} au départ (à l'arrivée il s'agit de scalaires, on ne précise donc pas la base d'arrivée de K qui est en fait (1)).

On sait d'après le cours que $Mat_{\mathcal{B}}$ est un isomorphisme d'e.v.

On en déduit que la famille (e_1^*, \ldots, e_n^*) est une base de $\mathcal{L}(E, \mathbb{K})$ car elle s'envoie par $\operatorname{Mat}_{\mathcal{B}}$ sur la base canonique de $M_{1,n}(\mathbb{K})$.

b) On peut donner le même argument qu'au a) avec cette fois l'isomorphisme d'e.v. : $\operatorname{Mat}_{\mathcal{B}}: \mathcal{L}(E) \to M_n(\mathbb{K}).$

La famille des $(u_{i,j})$ s'envoie sur la base canonique $(E_{i,j})$ de $M_n(\mathbb{K})$. C'est donc bien une base.

a) Soit $x_1, x_2 \in E$ et λ_1, λ_2 dans \mathbb{K} . Comme φ est linéaire : 10)

$$u_{\varphi,\varepsilon}(\lambda_1 x_1 + \lambda_2 x_2) = (\lambda_1 \varphi(x_1) + \lambda_2 \varphi(x_2))\varepsilon$$

et par distributivité pour les scalaires, on conclut bien que :

$$u_{\varphi,\varepsilon}(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 u_{\varphi,\varepsilon}(x_1) + \lambda_2 u_{\varphi,\varepsilon}(x_2).$$

Donc $u_{\varphi,\varepsilon} \in \mathcal{L}(E)$.

De manière évidente, pour tout $x \in E$, $u_{\varphi,\varepsilon}(x) \in \text{Vect}(\varepsilon)$ donc $\text{Im}(u_{\varphi,\varepsilon}) \subset \text{Vect}(\varepsilon)$.

D'autre part comme $u_{\varphi,\varepsilon}$ n'est pas l'application nulle car φ n'est pas l'application nulle, $\operatorname{Im}(u_{\varphi,\varepsilon})$ est de dim. au moins 1, ce qui donne l'égalité :

$$\operatorname{Im}(u_{\varphi,\varepsilon}) = \operatorname{Vect}(\varepsilon).$$

De même on a trivialement $\ker(\varphi) \subset \ker(u_{\varphi,\varepsilon})$ et comme de même $\ker(u_{\varphi,\varepsilon})$ n'est pas égal à E entier et que $\ker(\varphi)$ est un hyperplan de E, on conclut que :

$$\ker(u_{\varphi,\varepsilon}) = \ker(\varphi)$$

- b) On remarque que pour chaque (i, j), on a l'égalité : $u_{i,j} = u_{e_i^*, e_i}$. En effet dans la déf. des $u_{i,j}$ donnée dans l'énoncé, on a : $\forall x \in E, u_{i,j}(x) = e_i^*(x)e_i$.
- c) On va montrer que $u_{i,j}$ est un projecteur ssi i=j. Plus généralement, on va montrer que $u_{\varphi,\varepsilon}$ est un projecteur ssi $\varphi(\varepsilon) = 1$ ce qui donne en particulier le résultat pour les $u_{i,j}$ puisque $e_j^*(e_i) = \delta_{i,j}$.

Pour cela, on peut utiliser la caractérisation : p est un projecteur ssi $p \circ p = p$.

Ici pour chaque $x \in E$, $(u_{\varphi,\varepsilon} \circ u_{\varphi,\varepsilon})(x) = \varphi(\varphi(x)\varepsilon)\varepsilon = \varphi(x)\varphi(\varepsilon)\varepsilon$ (*).

On voit donc déjà que si $\varphi(\varepsilon) = 1$, on a bien $(u_{\varphi,\varepsilon} \circ u_{\varphi,\varepsilon}) = u_{\varphi,\varepsilon}$.

Réciproquement, si on suppose que $u_{\varphi,\varepsilon}$ est un projecteur et si on choisit un $x \in E$ tel que $\varphi(x) \neq 0$, avec (*), on a $\varphi(x)\varphi(\varepsilon)\varepsilon = \varphi(x)\varepsilon$ et comme $\varepsilon \neq 0$ et $\varphi(x) \neq 0$, on conclut que $\varphi(\varepsilon)$ = 1.

11) le sens facile est le sens \Leftarrow : on a vu au 10 a) que $u_{\varphi,\varepsilon}$ est de rang 1, d'image $\mathbb{K}\varepsilon$.

Sens \Rightarrow : soit u de rang 1. Soit ε tel que Im(u) = $\mathbb{K}\varepsilon$.

Pour chaque $x \in E$, on sait que $u(x) \in \mathbb{K}\varepsilon$ donc il existe bien un scalaire (unique) $\varphi(x)$ tel que $u(x) = \varphi(x)\varepsilon$. Ceci définit bien une application $\varphi: E \to \mathbb{K}$. Reste à montrer que φ est linéaire.

Soit $x, y \in E$, $\lambda, \mu \in \mathbb{K}$. Alors $u(\lambda x + \mu y) = \varphi(\lambda x + \mu y)\varepsilon$ (1).

Mais comme u est linéaire, on a aussi $u(\lambda x + \mu y) = \lambda u(x) + \mu u(y) = \lambda \varphi(x)\varepsilon + \mu \varphi(y)\varepsilon$ (2)

Donc en identifiant (1) et (2), comme $\varepsilon \neq 0$, on a :

$$\varphi(\lambda x + \mu y) = \lambda \varphi(x) + \mu \varphi(y).$$

12) (i) \Rightarrow (iii) Soit p un projecteur de rang 1. Par le 11), comme p est de rang 1, il s'écrit $p = u_{\varphi,\varepsilon}$. Par la question c) (iii), comme p est un projecteur, on sait que $\varphi(\varepsilon) = 1$.

Mieux : en fait, la même question c) (iii) (et l'équivalence du 11) montre l'équivalence entre (i) et (iii).

(i) \Rightarrow (ii) Soit p un projecteur de rang 1. Soit $q \in \mathcal{P} \setminus \{0\}$ tel que $q \leq p$.

Par propriété vue de l'ordre \leq , on sait que $\operatorname{Im} q \subset \operatorname{Im} p$. Or comme $\operatorname{Im} p$ est une droite et que $\operatorname{Im} q$ n'est pas réduit à zéro, on conclut que $\operatorname{Im} q = \operatorname{Im} p$.

De même l'inclusion $\ker p \subset \ker q$ donne $\ker p = \ker q$ car $\ker p$ est un hyperplan et $\ker q \neq E$.

Ainsi p et q sont deux projecteurs ayant même image et même noyau donc p = q.

On a bien montré que p est minimal pour \leq .

(ii) \Rightarrow (i) par contraposée : supposons que $p \in \mathcal{P} \setminus \{0\}$ n'est pas de rang 1. Il est donc de rang au moins deux. Soit $(\varepsilon_1, \dots, \varepsilon_r)$ une base de Im p (avec $r \geq 2$) et $(\varepsilon_{r+1}, \dots, \varepsilon_n)$ une base de ker p.

Soit q le projecteur sur $Vect(\varepsilon_1)$ parallèlement à $Vect(\varepsilon_2, \dots, \varepsilon_n)$.

On a $q \neq p$.

Soit
$$x = \sum_{i=1}^{n} x_i \varepsilon_i$$
. Alors $p(x) = \sum_{i=1}^{r} x_i \varepsilon_i$ et $q(p(x)) = x_1 \varepsilon_1 = q(x)$.

De même p(q(x)) = q(x).

Ainsi $q \le p$ avec $p \ne q$ donc p n'est pas minimal pour \le .

3 Un théorème sur les automorphismes de l'algèbre $(\mathcal{L}(E), +, \circ, \cdot)$

13) (i) On montre d'abord que A est linéaire :

si $\lambda, \mu \in \mathbb{K}$ et $(u, v) \in \mathcal{L}(E)^2$, $A(\lambda u + \mu v) = g \circ (\lambda u + \mu v) \circ g^{-1} \stackrel{(*)}{=} \lambda A(u) + \mu A(v)$, l'égalité (*) étant vraie car \circ est bilinéaire.

- (ii) Il est immédiat que $A(id) = id \operatorname{car} g \circ id \circ g^{-1} = id$.
- (iii) Enfin $A(u) \circ A(v) = g \circ u \circ g^{-1} \circ g \circ v \circ g^{-1} = g \circ u \circ v \circ g^{-1} = A(u \circ v)$.

Avec (i), (ii), (iii), on sait que A est un morphisme d'algèbre de $\mathcal{L}(E)$.

Enfin, A est bijective car l'application $u \mapsto g^{-1} \circ u \circ g$ convient comme réciproque de A.

14) a) Si $p \in \mathcal{P}$ alors $p^2 = p$ donc $A(p^2) = A(p)$ et comme A est un morphisme pour \circ , on a $A(p)^2 = A(p)$. Donc $A(p) \in \mathcal{P}$.

Notons aussi que la réciproque est vraie : si $A(p) \in \mathcal{P} \setminus \{0\}$ alors $p \in \mathcal{P} \setminus \{0\}$ puisque A^{-1} est aussi un morphisme d'algèbres.

b) Si $p \in \mathcal{P} \setminus \{0\}$ est minimal pour \leq alors A(p) est aussi minimal pour \leq .

En effet : si $q \leq A(p)$ alors comme A est bijective, il existe un $q_1 \in \mathcal{P} \setminus \{0\}$ tel que $q = A(q_1)$.

Et la relation $A(q_1) \leq A(p)$ avec $A(q_1) \in \mathcal{P} \setminus \{0\}$ signifie que $A(q_1) \circ A(p) = A(p) \circ A(q_1) = A(q_1)$ et donc via A^{-1} on a $p \circ q_1 = q_1 \circ p = q_1$ et minimalité de p, on conclut que $q_1 = p$ et donc q = A(p) ce qui montre la minimalité de A(p).

- c) D'après la question 12, on sait que $u_{i,i} = u_{e_i^*,e_i}$ est minimal pour l'ordre dans $\mathcal{P} \setminus \{0\}$, on sait donc par la question b) précédente que $A(u_{i,i})$ aussi et donc par la question 12 iii), il existe bien ϕ_i et ε_i tels que $A(u_{i,i}) = u_{\phi_i,\varepsilon_i}$ avec en outre $\phi_i(\varepsilon_i) = 1$.
- d) Soit $i \neq j$. Comme $A(u_{i,i} \circ u_{j,j}) = A(0) = 0$, on a $A(u_{i,i}) \circ A(u_{j,j}) = 0$.

Donc $u_{\phi_i,\varepsilon_i} \circ u_{\phi_j,\varepsilon_j} = 0$.

En évaluant ces applications sur le vecteur ε_j comme $u_{\phi_j,\varepsilon_j}(\varepsilon_j) = \varepsilon_j$, on obtient $u_{\phi_i,\varepsilon_i}(\varepsilon_j) = 0$.

Donc
$$si i \neq j$$
, on a : $\phi_i(\varepsilon_j) = 0$ car $\varepsilon_i \neq 0$.

Ainsi on a $\forall (i, j) \in [1, n]^2$, $\phi_i(\varepsilon_j) = \delta_{i,j}$ (†).

Montrons que ceci entraı̂ne que les deux familles $(\varepsilon_1, \ldots, \varepsilon_n)$ et (ϕ_1, \ldots, ϕ_n) sont libres.

• On prend une C.L. $\lambda_1 \varepsilon_1 + \cdots + \lambda_n \varepsilon_n = 0$.

Pour chaque $i \in [1, n]$, on applique ϕ_i à cette égalité, on a $\lambda_i = 0$.

• De même avec une CL $\lambda_1\phi_1 + \cdots + \lambda_n\phi_n = 0$ et on applique ε_i .

Remarque : ainsi la relation (†) dit que $(\varepsilon_1, \ldots, \varepsilon_n)$ et (ϕ_1, \ldots, ϕ_n) sont deux bases, la seconde étant la duale de la première.

15) a) (i) Soit $k \neq j$: $A(u_{i,j}) \circ u_{\phi_k, \varepsilon_k} = A(u_{i,j}) \circ A(u_{k,k}) = A(u_{i,j} \circ u_{k,k})$ et comme $j \neq k$, on obtient $A(u_{i,j}) \circ u_{\phi_k, \varepsilon_k} = 0$.

Donc en appliquant cette égalité à ε_k , on obtient pour tout $k \neq j$, $A(u_{i,j})(\varepsilon_k) = 0$.

Donc $\ker(A(u_{i,j}) \supset \operatorname{Vect}(\varepsilon_k, k \neq j)$, et comme A est injectif et $u_{i,j} \neq 0$, on sait que

 $\ker A(u_{i,j})$ n'est pas E entier, d'où l'égalité $\ker(A(u_{i,j})) = \operatorname{Vect}(\varepsilon_k, k \neq j)$ (hyperplan).

- (ii) Avec le (i) on sait que $A(u_{i,j})$ est aussi de rang 1.
- (iii) D'autre part $A(u_{i,j}) \circ A(u_{j,i}) = A(u_{i,i}) = u_{\phi_i,\varepsilon_i}$.

En appliquant cette égalité au vecteur ε_i , on obtient $A(u_{i,j})(A(u_{j,i})(\varepsilon_i)) = \varepsilon_i$.

Donc $\varepsilon_i \in \operatorname{Im}(A(u_{i,j}).$

Comme $A(u_{i,j})$ est de rang 1 par le (ii), on sait que $\operatorname{Im}(A(u_{i,j})) = \operatorname{Vect}(\varepsilon_i)$.

b) Par ce qui précède $A(u_{i,j})$ et u_{ϕ_i,ε_i} ont le même noyau de dim n-1: Vect $(\varepsilon_k,\ k\neq j)$.

Comme $\operatorname{Im}(A(u_{i,j})) = \operatorname{Vect}(\varepsilon_i)$, on a bien un $\lambda \in K$ tel que $A(u_{i,j})(\varepsilon_j) = \lambda \varepsilon_i$.

Suivant l'énoncé, on note ce λ avec les indices : $\lambda_{i,j}$.

Mais alors les deux A.L. $A(u_{i,j})$ et $\lambda_j u_{\phi_j,\varepsilon_i}$ coïncident sur la base $(\varepsilon_1,\ldots,\varepsilon_n)$ donc sont égales.

- c) $\lambda_{i,j}.\lambda_{j,k}u_{\phi_j,\varepsilon_i}\circ u_{\phi_k,\varepsilon_j}=A(u_{i,j}\circ u_{j,k})=A(u_{i,k})=\lambda_{i,k}u_{\phi_k,\varepsilon_i}.$ En appliquant cette égalité à ε_k , on a bien la relation $\lambda_{i,j}.\lambda_{j,k}=\lambda_{i,k}.$
- 16) (i) Pour chaque i = 1, ..., n, on note $\alpha_i = \lambda_{i,1} \varepsilon_i$ (le choix de l'indice 1 est arbitraire ici comme on va le voir ci-dessous).

Comme les nombres $\lambda_{i,1}$ sont tous non nuls et que $(\varepsilon_1,\ldots,\varepsilon_n)$ est une base de E, on sait que $(\alpha_1,\ldots,\alpha_n)$ est une base de E^* .

(ii) On sait que ϕ_1, \ldots, ϕ_n est la base duale de $(\varepsilon_1, \ldots, \varepsilon_n)$ par 14 d). Montrons que la base duale de $(\alpha_1, \ldots, \alpha_n)$ est la famille $(\alpha_1^*, \ldots, \alpha_n^*)$ où $\alpha_i^* = \frac{1}{\lambda_{i,1}} \phi_i$.

Il s'agit de montrer que pour tout (i,j), $\alpha_i^*(\alpha_i) = \delta_{i,j}$ (*)

Or pour $i \neq j$, c'est évident car $\phi_j(\varepsilon_i) = 0$ et si i = j, $\alpha_i^*(\alpha_i) = \frac{\lambda_{i,1}}{\lambda_{i,1}} \phi_i(\varepsilon_i) = 1$.

Ainsi on a bien montré (*).

(iii) Montrons que pour tout $(i,j) \in [1,n]^2$, $A(u_{i,j}) = u_{\alpha_i^*,\alpha_i}$.

Par le 15) b) on sait que $A(u_{i,j}) = \lambda_{i,j} u_{\phi_j,\varepsilon_i}$ (1).

Or pour chaque $x \in E$, par notre définition des α_i on sait que :

$$u_{\alpha_j^*,\alpha_i}(x) = \alpha_j^*(x)\alpha_i = \frac{\lambda_{i,1}}{\lambda_{j,1}}\phi_j(x)\varepsilon_i \quad (2).$$

Par la relation du 15 c), on sait que $\frac{\lambda_{i,1}}{\lambda_{j,1}} = \lambda_{i,j}$, et on en déduit avec (2) que :

 $\forall x \in E, \ u_{\alpha_i^*,\alpha_i}(x) = \lambda_{i,j}\phi_j(x)\varepsilon_i \quad (3)$

En comparant (3) et (1) on a bien montré que $A(u_{i,j}) = u_{\alpha_i^*,\alpha_i}$

17) Soit $g \in \mathcal{L}(E)$ définie par $\forall i \in [1, n], g(e_i) = \alpha_i$.

Comme g envoie une base de E sur une base de E, on sait que g est bijective.

L'idée est que pour chaque (i,j), $A(u_{i,j})$ agit sur la base des $(\alpha_1,\ldots,\alpha_n)$ comme $u_{i,j}$ agit sur la base $(\varepsilon_1,\ldots,\varepsilon_n)$. Ceci va se traduire par la relation $A(u_{i,j}) = g \circ u_{i,j} \circ g^{-1}$. L'opération $g \circ \square \circ g^{-1}$ « transporte l'action d'une base sur l'autre » ...

Montrons l'affirmation du cartouche ci-dessus :

Soit $x \in E$. On le décompose en $x = \sum_{k=1}^{n} x_k \alpha_k$ sur la base $(\alpha_1, \dots, \alpha_n)$. Alors on sait par la question précédente que $A(u_{i,j})(x) = x_j \alpha_i$ (1).

D'autre part : $g^{-1}(x) = \sum_{k=1}^{n} x_k \varepsilon_k$ et donc $u_{i,j}(g^{-1}(x)) = x_j \varepsilon_i$.

Finalement $g(u_{i,j}(g^{-1}(x))) = x_j \alpha_i$ (2).

En comparant (1) et (2), on a bien montré que $A(u_{i,j}) = g \circ u_{i,j} \circ g^{-1}$ comme annoncé.

Enfin notons $B: \mathcal{L}(E) \to \mathcal{L}(E), u \mapsto g \circ u \circ g^{-1}.$

Par la question précédente, pour tout $(i, j) \in [1, n]^2$, $A(u_{i,j}) = B(u_{i,j})$.

Les deux A.L. A et B coïncident sur la base $(u_{i,j})_{(i,j)\in[1,n]^2}$ de $\mathcal{L}(E)$ donc sont égales partout.