DM 1 : suites récurrentes linéaires à coefficients non constants et fractions continues

Pour le lundi 18 septembre

Dans ce devoir, on va étudier des suites $(u_n) \in \mathbb{K}^{\mathbb{N}}$ définies par la donnée de leurs deux premiers termes u_0 et u_1 et une relation de récurrence linéaire de la forme :

$$\mathscr{R}: \quad \forall \ n \in \mathbb{N}^*, \ u_{n+1} = b_n u_n + a_n u_{n-1}$$

où (a_n) et (b_n) sont deux suites données.

Question 0: Les suites (a_n) et (b_n) étant données, justifier que l'ensemble S des suites $(u_n) \in \mathbb{K}^{\mathbb{N}}$ vérifiant (\mathcal{R}) est un \mathbb{K} -e.v. de dimension deux.

Question 0 bis : Faire un résumé du cours de 1ère année donnant une base explicite de ${\mathcal S}$ dans le cas particulier où les deux suites (a_n) et (b_n) sont constantes (trois cas si $\mathbb{K} = \mathbb{R}$, deux si $\mathbb{K} = \mathbb{C}$).

Partie I : Étude dans le cas particulier $(b_n) = (1)$

Dans cette partie, on étudie les suites vérifiant

$$(\mathscr{R}_1): \forall n \in \mathbb{N}^*, u_{n+1} = u_n + a_n u_{n-1}.$$

- 1) Dans cette question, les a_n sont supposés positifs ou nuls, ainsi que u_0 et u_1 .
 - a) Étudier le sens de variation de (u_n) .
 - b) Montrer que, pour tout $n \ge 2$, $u_{n+1} \le u_n e^{a_n}$.
 - c) Montrer que si la série $\sum a_n$ converge, alors la suite (u_n) converge.
 - d) Réciproquement, montrer que si $u_1 > 0$ et si (u_n) converge, alors $\sum a_n$ converge.
- 2) Dans cette question, on suppose que la série $\sum a_n$ est absolument convergente. On considère la suite (v_n) définie par :

$$v_0 = |u_0|, v_1 = |u_1|$$
 et $\forall n \in \mathbb{N}^*, v_{n+1} = v_n + |a_n| v_{n-1}$.

- a) Comparer $|u_n|$ et v_n .
- b) Montrer que la série $\sum (u_{n+1} u_n)$ est absolument convergente.
- c) En déduire que la suite (u_n) converge.
- 3) Dans cette question, à titre d'exemple, on prend : $\forall n \in \mathbb{N}^*, a_n = \frac{1}{(n+1)n}$.
 - a) Montrer que la suite (u_n) converge. On note ℓ sa limite.
 - b) On suppose que $\ell \neq 0$. Déterminer un équivalent de $(u_{n+1} u_n)$, puis de (ℓu_n) .
 - c) On suppose que $\ell = 0$. Que peut-on dire de plus de (u_n) ?

Partie II: Développement en fractions continues généralisées

Quelques définitions

Soient $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 1}$ deux suites de nombres complexes, avec $b_n\neq 0$ pour tout $n\geq 1$.

$$R_0 = a_0 \; ; \; R_1 = a_0 + \frac{a_1}{b_1} \; ; \; R_2 = a_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2}} \; ; \; R_3 = a_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3}}} \; ; \; \dots$$

On définit R_n en remplaçant, dans R_{n-1} , le terme b_{n-1} par $b_{n-1} + \frac{a_n}{b_n}$. A cause des divisions, certains termes de la suite R_n peuvent ne pas être définis. On supposera

cependant dans ce qui suit que ce n'est pas le cas.

On dit alors que la suite (R_n) définit une fraction continue.

Les termes R_n s'appellent les réduites de la fraction continue $(R_n$ est la réduite d'ordre n).

On dira qu'une fraction continue est convergente si la suite converge (R_n) converge et dans ce cas la limite R sera appelée la valeur de la fraction continue.

Premier critère de la convergence

4) Montrer (par récurrence) le résultat suivant : pour tout $n \in \mathbb{N}$, on a $R_n = \frac{P_n}{Q}$ avec (P_n) et (Q_n) définies pour tout $n \ge -1$, par :

$$P_{-1} = 1, \ Q_{-1} = 0, \ P_0 = a_0, \ Q_0 = 1$$

$$\forall n \ge 1, \begin{cases} P_n = b_n P_{n-1} + a_n P_{n-2}, \\ Q_n = b_n Q_{n-1} + a_n Q_{n-2}. \end{cases}$$
 (†)

- N.B. Pour une fois, on montre une formule de récurrence, en l'occurrence (†), par récurrence!
- 5) En déduire que pour tout $n \ge 1$,

$$P_n Q_{n-1} - P_{n-1} Q_n = (-1)^{n-1} a_1 a_2 \dots a_n$$

$$R_n - R_{n-1} = \frac{(-1)^{n-1} a_1 a_2 \dots a_n}{Q_n Q_{n-1}}$$

6) En déduire que la fraction continue définie par $\forall n \in \mathbb{N}, \ R_n = a_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{\cdots a_n}}}}$ converge

si, et seulement si, la série de terme général $\frac{(-1)^{n-1}a_1a_2\dots a_n}{Q_nQ_{n-1}}$ est convergente. Et la valeur de la valeur continue est alors égale à : $a_0 + \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}a_1a_2\dots a_n}{Q_nQ_{n-1}}$.

Un lien série/fraction continue avec des exemples :

7) On suppose que la série de somme partielle $S_n = \sum_{k=0}^n \frac{a_0 a_1 \dots a_k}{b_0 b_1 \dots b_k}$ est convergente. Si $a_n + b_n \neq 0$ pour tout $n \ge 1$, montrer qu'alors la fraction continu

$$\frac{a_0}{b_0 - \cfrac{a_1b_0}{a_1 + b_1 - \cfrac{a_2b_1}{a_2 + b_2 - \cfrac{a_3b_2}{a_3 + b_3 - \dots}}}}$$

est convergente et sa valeur est $\sum_{k=0}^{+\infty} \frac{a_0 a_1 \dots a_k}{b_0 b_1 \dots b_k}$

8) On admet (ce sera du cours) que $e^{-1} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!}$. A l'aide de suites (a_n) et (b_n) judicieusement choisies, déduire de la question précédente que :

$$\frac{1}{e} = \frac{1}{2 + \frac{2}{2 + \frac{3}{3 + \dots + \frac{n}{n + \dots}}}} \quad \text{et donc } e = 2 + \frac{2}{2 + \frac{3}{3 + \dots + \frac{n}{n + \dots}}}$$

9) On admet encore (ce sera du cours aussi) que : $\frac{\pi}{4} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$. En déduire que :

$$\frac{\pi}{4} = \frac{1}{1 + \frac{1^2}{2 + \frac{3^2}{2 + \dots}}}$$

2

Partie III (5/2): fonctions de Bessel et développement de tangente

Des résultats de convergence admis ¹

Le résultat du 6) n'est pas très utile, dans la pratique, pour étudier la convergence d'une fraction continue. En effet, la suite (Q_n) n'est pas connue explicitement, et cela rend difficile l'étude de la série de terme général $(-1)^{n-1}a_1 \dots a_n/(Q_nQ_{n-1})$.

Pour obtenir un critère de convergence plus pratique, nous supposerons d'abord que $a_0=0$ ce qui ne change rien à la convergence, et nous allons voir que chaque réduite $R_n = \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{1 +$

peut aussi s'écrire sous la forme $R_n = \frac{1}{c_1 + \frac{1}{c_2 + \frac{1}{c_3 + \frac{1}{c_n}}}}$ (**).

En effet, pour $R_1 = a_1/b_1$ on a $R_1 = 1/c_1$ avec $c_1 = b_1/a_1$,

$$R_2 = \frac{a_1}{b_1 + \frac{a_2}{b_2}} = \frac{1}{\frac{b_1}{a_1} + \frac{a_2}{b_2 a_1}} = \frac{1}{c_1 + \frac{1}{c_2}},$$

avec $c_2 = \frac{b_2 a_1}{a_2}$. Ensuite R_3 s'obtient en remplaçant b_2 par $b_2 + \frac{a_3}{b_3}$. On vérifie par récurrence (avec les relations de récurrence sur P_n et Q_n vues dans la partie II) le résultat suivant :

Propriété admise 1 : Soient (a_n) et (b_n) deux suites de nombres complexes non nuls. Alors en posant $c_{2n} = \frac{a_1 a_3 \dots a_{2n-1}}{a_2 a_4 \dots a_{2n}} b_{2n}$, et $c_{2n+1} = \frac{a_2 a_4 \dots a_{2n}}{a_1 a_3 \dots a_{2n+1}} b_{2n+1}$ les deux fractions (*) et (**) sont égales pour tout $n \in \mathbb{N}$.

On peut donc se ramener toujours à de telles fractions continues avec des 1 au numérateur.

Notation (pas standard): pour alléger l'écriture on note ici

$$\forall \, n \in \mathbb{N}^*, \, \left[c_1, \ldots, c_n\right] \coloneqq \frac{1}{c_1 + \frac{1}{c_2 + \frac{1}{c_3 + \frac{1}{c_4 + \frac{1}{c$$

Pour les fractions écrites sous cette forme, on a alors :

Propriété admise 2 : Si $(c_n)_{n\geq 1}$ est une suite de nombres complexes tels que $|c_n|\geq 2$ pour tout $n\in\mathbb{N}^*$, et telle que la série $\sum \frac{1}{|c_nc_{n+1}|}$ est convergente alors la fraction continue associée : $[c_1,\ldots,c_n,\ldots]$ est convergente.

10) **Question d'application :** Montrer que la fraction continue [1, 2, ..., n, ...] est convergente.

Relation entre les « quotients complets » et nouvelle façon de se donner une fraction continue

Soit $\alpha_1 = [c_1, \dots, c_n, \dots]$ $(c_n \in \mathbb{C}^* \text{ pour tout } n \ge 1)$ une fraction continue convergente. Si pour tout $n \in \mathbb{N}^*$, nous posons $\alpha_n = [c_n, c_{n+1}, \dots]$ nous voyons que :

$$\alpha_n = \frac{1}{c_n + \alpha_{n+1}}$$
 pour tout $n \ge 1$ (*)

(Les nombres α_n s'appellent « quotients complets » d'où le titre de ce paragraphe).

Réciproquement, soit $(\alpha_n)_n \ge 1$ une suite dans \mathbb{C} vérifiant la relation (*) où les c_n sont des nombres complexes non nuls. On a alors :

$$\alpha_1 = \frac{1}{c_1 + \alpha_2} = \frac{1}{c_1 + \frac{1}{c_2 + \alpha_3}} = \frac{1}{c_1 + \frac{1}{c_2 + \frac{1}{c_3 + \alpha_4}}}$$

^{1.} pour gagner du temps, pas spécialement difficiles, fondée sur les récurrences linéaires justement

et par récurrence :

$$\alpha_1 = [c_1, c_2, \dots, c_{n-1}, c_n + \alpha_{n+1}]$$

Il est donc assez naturel de se demander si alors : $\alpha_1 = [c_1, c_2, \dots, c_n, \dots]$. À ce sujet, on a le résultat suivant :

Propriété admise 3 : Soient $(c_n)_n \ge 1$ une suite de nombres complexes non nuls et soit $(\alpha_n)_{n \ge 1}$ une suite d'éléments de $\mathbb C$ vérifiant (*). On suppose qu'il existe un entier N tel que $|c_n| \ge 2$ pour tout $n \ge N$. On suppose en outre que $\lim_{n \to +\infty} \frac{\alpha_{n+1}}{c_n} = 0$ et que la série $\sum \frac{1}{|c_n c_{n+1}|}$ est convergente.

Alors
$$\alpha_1 = [c_1, c_2, ..., c_n, ...]$$

Où les fonctions de Bessel entrent en scène (5/2)

Soit $x \in \mathbb{C}$; on pose $x = re^{i\theta}$ avec $-\pi < \theta \le \pi$, et $x^{\nu} = r^{\nu}e^{i\nu\theta}$. La fonction de Bessel J_{ν} est définie pour tout $\nu > -1$ et tout $x \in \mathbb{C}$ par :

$$J_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{+\infty} \frac{(-1)^k}{k! \Gamma(\nu+k+1)} \left(\frac{x}{2}\right)^{2k}$$

où, bien sûr, $\Gamma(\nu) = \int_0^{+\infty} t^{\nu-1} e^{-t} dt$. On suppose connue la valeur $\Gamma(1/2)$ (cf. l'an dernier).

Les questions suivantes sont indépendantes de ce qui précède et font de bonnes révisions de manipulation sur les séries de fonctions

- 11) Justifier que $J_{\nu}(x)$ est bien définie pour $x \in \mathbb{C}$ et $\nu \in]-1, +\infty[$.
- 12) Les deux égalités suivantes sont vraies, démontrez en une :

$$\begin{cases} J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi}} x^{-\frac{1}{2}} \sin x \\ J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi}} x^{-\frac{1}{2}} \cos x \end{cases}$$

13) Démontrez la « relation de contiguïté » suivante :

$$J_{\nu-1}(x) + J_{\nu+1}(x) = \frac{2\nu}{r} J_{\nu}(x)$$
 pour $x \neq 0$ et $\nu > 0$

14) Un équivalent également utile : montrer que $J_{\nu+n}(x) \underset{n \to +\infty}{\sim} \left(\frac{x}{2}\right)^{\nu+n} \frac{1}{\Gamma(\nu+n+1)}$ Cet équivalent montre en particulier que $J_{\nu+n}(x) \neq 0$ pour n assez grand.

Fractions continues associées

15) Déduire de ce qui précède que si on pose $\alpha_n(x)=i\frac{J_{\nu+n-1}(x)}{J_{\nu+n-2}(x)}$, alors :

$$\alpha_n(x) = \frac{1}{\frac{2(\nu + n - 1)}{\alpha x} + \alpha_{n+1}(x)}$$

16) Justifier alors que la propriété admise 3 s'applique pour obtenir, pour tout $\nu > 0$:

$$\frac{J_{\nu}(x)}{J_{\nu-1}(x)} = \frac{x}{2\nu - \frac{x^2}{2(\nu+1) - \frac{x^2}{2(\nu+2) - \frac{x^2}{\ddots}}}}$$

17) En appliquant la relation précédente à une valeur de ν bien choisie, montrer que, sous réserve de définition :

$$\tan x = \frac{x}{1 - \frac{x^2}{3 - \frac{x^2}{5 - \frac{x^2}{\cdot}}}}$$

Culturel : ce développement de tangente en fraction continue a permis à Lambert de donner la première démonstration d'irrationnalité de π en 1761.

4