Exercice 1 (CCINP MP 2022). On étudie la série entière $\sum a_n x^n$, où $a_n = \int_0^1 \frac{1}{(2+t^2)^{n+1}} dt$

- a) Montrer que le rayon de convergence R est au moins égal a 2 .
- b) Calculer la somme de cette série entière, pour |x| < 2.

Exercice 2 (CCINP MP 2022). Donner le rayon de convergence et calculer la somme des séries entières suivantes : $\sum nx^n$, $\sum 2nx^{2n}$, $\sum n^{(-1)^n}x^n$

Exercice 3 (CCINP MP 2022). a) Calculer $I_{2n} = \int_0^{\pi} \sin^{2n}(x) dx$ pour tout $n \in \mathbb{N}$.

- b) Montrer que $\frac{1}{\sqrt{1-u}} = \sum_{n\geqslant 0} \frac{1}{4^n} \binom{2n}{n} u^n$ pour tout $u \in]-1,1[$.
- c) On pose $f(x) = \int_0^{\pi} \frac{1}{\sqrt{1 x^2 \sin^2 t}} dt$. Justifier que f est développable en série entière pour $x \in]-1,1[$, et exprimer ce développement.

Exercice 4 (Mines Telecom MP 2022). Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^{\frac{\pi}{4}} (\tan(t))^n dt$.

- a) Déterminer la limite de la suite (a_n) .
- b) Déterminer, pour $n \in \mathbb{N}$, une relation entre a_{n+2} et a_n .
- c) On considère $f: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$. Déterminer le domaine de définition de f.
- d) Calculer f.

Exercice 5 (CCP MP 2022). Soit $n \in \mathbb{N}^*$ et on pose $f_n : x \mapsto \frac{e^{i2^n x}}{n^n}$. Soit $S : x \mapsto \sum_{n=1}^{+\infty} f_n(x)$.

- a) Montrer que S est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- b) (i) Quel est le rayon de convergence de la série entière $\sum_{k\geq 0} \frac{2^{k^2}}{k!k^k} x^k$. (ii) Quel est le rayon de convergence de la série de Taylor de S en 0?
- c) Rappeler la formule de Taylor avec reste intégrale.

Montrer que : $\forall z \in \mathbb{C}, e^z = \sum_{k=0}^{+\infty} \frac{z^k}{k!}$

Exercice 6 (CCINP MP 2022). Pour $n \in \mathbb{N}$, on pose $f_n : x \in \mathbb{R}^+ \longmapsto \frac{e^{-x}}{(1+x)^n}$ et $J_n = \int_0^{+\infty} f_n$.

- a) Justifier l'existence de J_n et étudier la limite de (J_n) .
- b) Calculer f_n . Trouver une relation entre J_n et J_{n+1} . En déduire un équivalent de J_n .
- c) Donner le rayon de convergence de la série entière $\sum J_n x^n$.
- d) Exprimer sa somme sous forme d'une intégrale.

Exercice 7 (CCINP MP 2021). a) Déterminer le rayon de convergence de $\sum_{n\geq 1} (-1)^n \ln(n) x^n$.

On note
$$S(x) = \sum_{n=1}^{+\infty} (-1)^n \ln(n) x^n$$

- b) Montrer que : $\forall x \in]-1, 1[, S(x) = \frac{1}{1+x} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln \left(1 + \frac{1}{n}\right) x^{n+1}.$
- c) En déduire que $\lim_{x\to 1} S(x) = \frac{1}{2} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln \left(1 + \frac{1}{n}\right)$.
- d) En utilisant la formule de Wallis $\lim_{n\to+\infty} \frac{(2^n n!)^2}{(2n)!\sqrt{2n+1}} = \sqrt{\frac{\pi}{2}}$, déterminer $\lim_{x\to 1} S(x)$.

Exercice 8 (Centrale 1 MP 2022). Soit V un voisinage de 0 dans \mathbb{R} et $f \in \mathcal{C}^{\infty}(V, \mathbb{R})$.

a) On suppose qu'il existe $(\alpha, A, \lambda) \in (\mathbb{R}^{+*})^3$ tels que :

$$\forall n \in \mathbb{N}, \sup_{x \in [-\alpha, \alpha]} |f^{(n)}(x)| \le A\lambda^n n!$$

Montrer que f est D.S.E. en 0 et donner une minoration du rayon de convergence en fonction de α et λ .

b) Montrer que la réciproque du a) est vraie.

Exercice 9 (A mettre en parallèle avec l'ex. Centrale 2 suivant). Rappelons qu'une partition d'un ensemble E est par définition un ensemble de parties non vides de E, disjointes deux à deux, dont la réunion est égale à l'ensemble E.

Pour $n \in \mathbb{N}$, notons B_n le nombre de partitions d'un ensemble de cardinal n (noter que c'est aussi le nombre de relation d'équivalences sur cet ensemble E) appelé n-ième nombre de Bell.

On pose $B_0 = 1$.

- a) Déterminer une relation de la forme $B_{n+1} = \sum_{k=0}^{n} \alpha_k B_k$ où l'on précisera la valeur des α_k , valable pour tout $n \in \mathbb{N}$.
- b) On considère la série génératrice exponentielle $\sum B_n \frac{x^n}{n!}$.
 - i) Montrer que son rayon de convergence R vérifie $R \ge 1$.
 - ii) Montrer que sa somme $E(x) = \sum_{n=0}^{+\infty} B_n \frac{x^n}{n!}$ satisfait une E.D. simple sur] R, R[.
 - iii) En déduire une formule explicite pour E(x) à l'aide de la fonction exp.
- c) En calculant le D.S.E. de E par composition, en déduire que :

$$\forall n \in \mathbb{N}, \quad B_n = \frac{1}{e} \sum_{k=0}^{+\infty} \frac{k^n}{k!},$$

Interprétation probabiliste : B_n est le moment d'ordre n d'une v.a. qui suit une loi de Poisson de paramètre 1.

Exercice 10 (Centrale 2 MP 2022). On note $\binom{n}{k}$ le nombre de partitions de [1, n] en k parties.

- a) Écrire une fonction d'arguments un entier n et une partition p de [1, n-1], codée sous la forme d'une liste de listes (par exemple [1; 2]; [3]) et qui retourne la liste des partitions de [1, n] que l'on peut obtenir à partir de p en rajoutant n. En déduire une fonction d'argument n qui retourne l'ensemble de toutes les partitions de [1, n].
- b) Calculer $\binom{n}{k}$ lorsque k=1, lorsque k=n et k>n. Montrer que

$$\left(\begin{array}{c} n+1\\k \end{array}\right) = \left(\begin{array}{c} n\\k-1 \end{array}\right) + k \left(\begin{array}{c} n\\k \end{array}\right).$$

c) On pose

$$f_k(x) = \frac{1}{(1-x)(1-2x)\cdots(1-kx)}.$$

Montrer que f_k est développable en série entière, préciser le rayon de convergence.

d) Exprimer $\sum_{n=1}^{+\infty} \binom{n}{k} x^n$ à l'aide de f_k .

Exercice 11 (Mines Ponts MP 2022). On pose, pour $x \in \mathbf{R}$, $f(x) = \int_0^{\pi} \cos(x \sin \theta) d\theta$

- a) Montrer que f est de classe \mathcal{C}^2 sur \mathbf{R} et vérifie : $\forall x \in \mathbf{R}, xf'(x) + f(x) + xf(x) = 0$.
- b) Montrer que la fonction f est développable en série entière en 0.
- c) Expliciter les coefficients du développement en série entière précédent.

Exercice 12 (Mines Ponts MP 2022). On pose $f: x \longmapsto \int_0^{2\pi} e^{x \sin t} dt$

- a) Montrer que f vérifie l'équation différentielle xy'' + y' = xy.
- b) Déterminer les solutions développables en série entière de cette équation.
- c) En déduire la valeur de $\int_0^{\pi/2} \sin^{2k}(t) dt$ pour $k \in \mathbb{N}^*$.