Banque CCINP: Ex. 33, 41, 52, 56, 57, 58.

Continuité, différentiabilité, caractère \mathcal{C}^1 de fonctions de \mathbb{R}^2 dans \mathbb{R} « concrètes »

Exercice 1. On pose
$$f(x,y) = \frac{x^5}{(y-x^2)^2 + x^8}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

En considérant $f(x, x^2)$ justifier que f n'est pas continue en 0. Montrer néanmoins que f admet une dérivée suivant tout vecteur en 0.

Exercice 2 (Vérification du caractère C^1). Soit $f(x,y) = \frac{x^3y^2}{x^2+y^2}$ si $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ et f(0,0) = 0. Montrer que la fonction f ainsi définie est de classe C^1 sur \mathbb{R}^2 .

Exercice 3 (Comment montrer qu'une fonction n'est pas C^1). On pose $f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}$ pour $(x,y) \neq (0,0)$ et f(0,0) = 0. La fonction f est-elle continue sur \mathbb{R}^2 ? De classe \mathcal{C}^1 sur \mathbb{R}^2 ?

Exercice 4 (Pour bosser mais pas trop). Soit
$$f: (x,y) \in \mathbb{R}^2 \mapsto \begin{cases} \exp(1/(x^2+y^2-1)) & \text{si } x^2+y^2 < 1 \\ 0 & \text{sinon} \end{cases}$$

Montrer que la fonction f suivante est de classe \mathcal{C}^1 sur \mathbb{R}^2 (et même \mathcal{C}^{∞} en fait).

Calcul de différentielles sans passer par les dérivées partielles

Exercice 5 (Exemples traités en cours ou proches).

- a) Soit $f \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Expliciter df(x) pour tout $x \in \mathbb{R}^n$.
- b) Soit E un espace vectoriel euclidien, et $\| \|$ sa norme euclidienne. Montrer que cette application norme de $E \setminus \{0\}$ dans \mathbb{R}^+ est différentiable et calculer sa différentielle de deux manières : (M1) sans coordonnées, en reliant la norme au produit scalaire, et en utilisant la linéarité du p.s (M2)
- c) Soit $A \in M_n(\mathbb{R})$ et (en identifiant $M_{n,1}(\mathbb{R})$ à \mathbb{R}^n), $f : x \mapsto (Ax|x)$. Calculer df(x) et $\nabla f(x)$ en tout point $x \in \mathbb{R}^n$. (avec les deux méthodes du b)).
- d) Calculer le gradient de l'application det : $M_n(\mathbb{R}) \to \mathbb{R}$ (pour le p.s can.) et en déduire la différentielle du déterminant.

Exercice 6. a) Dans $E = M_n(\mathbb{K})$ pour $f : M \to M^2$, calculer df(A).H pour tout $(A, H) \in E^2$. b) Généralisation du a) pour $f : M \to M^p$?

Exercice 7. Soit $A \in \mathcal{S}_n(\mathbb{R})$ et $f: x \in \mathbb{R}^n \setminus \{0\} \longmapsto f(x) := \frac{\langle Ax, x \rangle}{\|x\|^2}$. Calculer $\nabla f(x)$ en $x \neq 0$ et le comparer à la projection orthogonale de Ax sur l'hyperplan H_x orthogonal à x.

Utilisation de la dérivation le long d'une courbe (souvent une droite)

Exercice 8 (Cas de l'inversion de matrice). a) Justifier à l'aide du cours que $f: M \in GL_n(\mathbb{K}) \mapsto M^{-1}$ est de classe \mathcal{C}^1 .

b) A l'aide de l'exercice fait sur la planche F_1 pour les applications $t \mapsto A(t)^{-1}$, donner une formule pour df(A).H pour tout $A \in GL_n(\mathbb{K})$ et $H \in M_n(\mathbb{K})$.

Exercice 9. Soit U un ouvert de \mathbb{R}^n , soit $\overline{x} \in U$ et $f: U \to \mathbb{R}$ continue sur U, différentiable sur $U \setminus \{\overline{x}\}$. On suppose que $\forall x \in U$, $df(x).(x - \overline{x}) \ge 0$ (*). Montrer que f admet un minimum local en \overline{x} .

Extrema globaux

Exercice 10 (Fonctions convexes : caractérisations par la différentielle). Soit Ω un ouvert convexe de $E = \mathbb{R}^n$. Soit $f \in \mathcal{F}(\Omega, \mathbb{R})$.

On dit que f est convexe sur Ω ssi $\forall (a,b) \in \Omega^2$, $\forall t \in [0,1]$, $f((1-t)a+tb) \leq (1-t)f(a)+tf(b)$.

a) Fonctions auxiliaires d'une variable réelle :

Pour tout $a \in \Omega$ et tout $x \in E \setminus \{0\}$, on pose $I_{a,x} = \{t \in \mathbb{R}, a + tx \in \Omega\}$.

On pose $\varphi_{a,x}: I_{a,x} \to \mathbb{R}, t \mapsto f(a+tx)$.

Montrer que f est convexe sur Ω si, et seulement si, toutes les fonctions $\varphi_{a,x}$ pour $a \in \Omega$ et $x \in E$ sont convexes.

b) On suppose que f est différentiable sur Ω .

Montrer que les trois propriétés suivantes sont équivalentes :

(i) f est convexe sur Ω ,

- $\begin{array}{ll} \text{(ii)} \ \forall \ (a,b) \in \Omega^2, \ df(b)(b-a) \geq df(a)(b-a), \\ \text{(iii)} \ \forall \ (a,b) \in \Omega^2, \ f(b)-f(a) \geq df(a)(b-a). \end{array}$

On pourra admettre l'implication (iii) \Rightarrow (i)

c) On suppose encore que f est différentiable sur Ω . Soit $a \in \Omega$ un point critique de f i.e. tel que df(a) = 0. Montrer que f(a) réalise le minimum global de f sur Ω .

Exercice 11 (Exemple fondamental de fonctions convexes : les formes quadratiques positives). Soit $A \in$ $S_n(\mathbb{R})$ une matrice symétrique. On identifie $M_{n,1}(\mathbb{R})$ à \mathbb{R}^n et on note $A.x \in \mathbb{R}^n$ l'image du vecteur $x \in \mathbb{R}^n$ par la matrice A.

On considère la forme quadratique $f: x \mapsto (Ax|x)$ où (|) est le produit scalaire canonique de \mathbb{R}^n .

- a) Montrer que si A est une matrice symétrique positive alors f est une fonction convexe.
- b) Montrer que si A est une matrice symétrique définie positive alors f est une fonction strictement

Exercice 12 (Cas d'une fonction strictement convexe coercive). Soit E un e.v.n. de dim. finie et C un sous-ensemble convexe de E.

a) Soit $f: C \to \mathbb{R}$. On dit que f est strictement convexe sur C ssi pour tout $(a,b) \in C^2$ avec $a \neq b$ et pour tout $t \in]0,1[, f((1-t)a+tb) < (1-t)f(a)+tf(b).$

Montrer que si f admet minimum dans C alors celui-ci est atteint en un unique point.

- b) On suppose que C est un convexe fermé et que $f:C\to\mathbb{R}$ est coercive sur C ce qui signifie que si C est non borné $f(x) \xrightarrow[|x|]{\to +\infty} +\infty$. Montrer que f admet un unique minimum dans C.
- c) Exemple concret : on identifie \mathbb{R}^n à $M_{n,1}(\mathbb{R})$ et on considère $f:\mathbb{R}^n\to\mathbb{R}, x\mapsto \frac{1}{2}(Ax|x)+(b|x)+c$ avec A une matrice symétrique définie positive, $b \in \mathbb{R}^n$ et $c \in \mathbb{R}$. Montrer que f admet un minimum dans \mathbb{R}^n , atteint en un unique point \overline{x} .

Hessienne

Exercice 13. a) Pour $A \in M_n(\mathbb{R})$, b et c dans \mathbb{R}^n , et $f: x \mapsto \frac{1}{2} \langle Ax | x \rangle + \langle b | x \rangle + c$. Déterminer la hessienne $H_f(x)$ en tout point $x \in \mathbb{R}^n$.

b) Soit $r \in \mathcal{C}^2(\mathbb{R}^n, \mathbb{R})$ et $\forall x \in \mathbb{R}^n$, $q(x) = r(x)^2$. Calculer $H_q(x)$ en tout point $x \in \mathbb{R}^n$.

Exercice 14. Soit $f \in C^2(U, \mathbb{R})$ où U est un ouvert de \mathbb{R}^n .

Montrer que f est convexe sur U ssi $\forall x \in U$, $H_f(x) \in S_n^+(\mathbb{R})$.

Indication Pour le sens \Leftarrow , on pourra montrer que pour chaque couple $(x,y) \in U^2$, $\varphi: t \mapsto f(tx + (1-t)y)$ vérifie $\varphi'' \ge 0$ sur [0,1].

Etude locale à l'ordre deux pour les extrema

Exercice 15. Déterminer les extremums relatifs (i.e. locaux) et absolus (i.e. globaux) de

$$f:(x,y)\in\mathbb{R}^2\mapsto x^4+y^4-2(x-y)^2.$$

Indication – Pour l'étude en (0,0), on n'a pas de théorème mais on peut s'en tirer avec une idée simple.

Extrema sous contrainte

Exercice 16 (Cas où on a un paramétrage de l'hypersurface.. on se ramène à des extrema libres). Soit $f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto x+y$. Soit C le cercle unité.

Déterminer les extrema de $f_{\mid C}$ de deux façons :

- en paramétrant le cercle unité avec $\theta \mapsto (\cos(\theta), \sin(\theta))$
- avec le théorème sur les extrema liés.

Exercice 17 (Où l'on redémontre qu'une matrice symétrique réelle admet une v.p. réelle). Soit $A \in S_n(\mathbb{R})$. On identifie $M_{n,1}(\mathbb{R})$ à \mathbb{R}^n , muni de son p.s. can. et on considère $f: \mathbb{R}^n \to \mathbb{R}, x \mapsto (Ax|x)$. On note S la sphère unité de \mathbb{R}^n

- a) Justifier que $f_{|S|}$ admet un max. et un min.
- b) A l'aide de la caractérisation différentielle des extrema locaux de $f_{|S|}$, démontrer qu'il existe un $x \in S$ tel que Ax et x soient colinéaire, i.e. que A admet une v.p. réelle.