Mines-Ponts PSI 2021 Mathématiques 1

un corrigé 1

Rq. Dans tout ce corrigé, on supposera, plus généralement et plus précisément que ce qui est fait dans l'énoncé, que l'on a :

$$X(\Omega) \subset \{x_n, n \in \mathbb{N}\},\$$

où les x_n , pour $n \in \mathbb{N}$, sont deux à deux distincts. Cela évite en particulier des cas par cas fastidieux dans les questions de cours, pour distinguer les cas où $X(\Omega)$ est fini ou dénombrable.

Questions de cours

- 1. Par définition, X est d'espérance finie si la série $\sum x_n \mathbf{P}(X=x_n)$ converge absolument.
 - ullet Par théorème de transfert appliqué à la fonction valeur absolue $|\cdot|$, on a alors :

$$|X|$$
 est d'espérance finie \iff la série $\sum |x_n| \mathbf{P}(X=x_n)$ converge absolument \iff la série $\sum x_n \mathbf{P}(X=x_n)$ converge absolument \iff X est d'espérance finie.

2. Soit $M \in \mathbb{R}_+$ tel que $\mathbf{P}(|X| \leqslant M) = 1$. On a alors :

$$\forall n \in \mathbb{N}, \quad |x_n| \mathbf{P}(X = x_n) \leqslant M \mathbf{P}(X = x_n),$$

c'est clair si $|x_n| \leq M$, et c'est encore vrai si $|x_n| > M$ car on a alors $\{X = x_n\} \subset \{|X| > M\}$, donc par croissance des probabilités, $0 \leq \mathbf{P}(X = x_n) \leq \mathbf{P}(|X| > M) = 1 - \mathbf{P}(|X| \leq M) = 0$, donc $\mathbf{P}(X = x_n) = 0$ (de sorte que l'inégalité voulue est $0 \leq 0$).

Or la série $\sum \mathbf{P}(X=x_n)$ converge, donc par comparaison de termes positifs, la série $\sum |x_n|\mathbf{P}(X=x_n)$ converge, i.e. X admet une espérance.

Généralités sur les variables aléatoires

- **3.** On suppose que $X(\Omega) \subset \mathbb{Z}$ et que X vérifie (\mathcal{D}_{α}) où $\alpha > 0$.
 - La variable aléatoire |X| est alors à valeurs dans \mathbb{N} , de sorte que si |X| admet une espérance, alors la série $\sum \mathbf{P}(|X| \ge n)$ converge ².

Or par \mathcal{D}_{α} , on a $\mathbf{P}(|X| \ge n) \underset{n \to +\infty}{\sim} \frac{\alpha}{n}$, et la série harmonique $\sum \frac{1}{n}$ diverge, donc par comparaison de termes positifs, la série $\sum \mathbf{P}(|X| \ge n)$ diverge aussi.

Ainsi |X| n'admet pas d'espérance, donc X non plus d'après la question 1.

- On sait que si X^2 admet une espérance (i.e. si X admet une variance), alors X admet une espérance, donc par contraposée, X^2 n'admet pas d'espérance non plus.
- **4.** On suppose que X est symétrique et que $f: \mathbb{R} \to \mathbb{R}$ est une fonction impaire.
 - 1. Merci aux corrigés précédemment mis à disposition, qui m'ont permis de simplifier certains passages!
 - 2. C'est même une équivalence, et on a alors $\mathbf{E}(|X|) = \sum_{n=1}^{+\infty} \mathbf{P}(|X| \ge n)$.

- Comme X est symétrique, X et -X suivent la même loi, donc par le théorème 1 du préambule, f(X) et f(-X) suivent la même loi. Mais f est impaire, donc f(-X) = -f(X).

 Ainsi f(X) et -f(X) suivent la même loi, i.e. f(X) est symétrique.
- Si f(X) est d'espérance finie, alors puisque -f(X) suit la même loi que f(X), cette variable -f(X) est aussi d'espérance finie et $\mathbf{E}(-f(X)) = \mathbf{E}(f(X))$. Mais par linéarité de l'espérance, on a $\mathbf{E}(-f(X)) = -\mathbf{E}(f(X))$, donc $\mathbf{E}(f(X)) = 0$.
- 5. On suppose X et Y symétriques et indépendantes. Posons Z = (X, Y).
 - On a $Z(\Omega) \subset X(\Omega) \times Y(\Omega)$, et pour tout $(x,y) \in X(\Omega) \times Y(\Omega)$:

$$\mathbf{P}(Z=(x,y)) = \mathbf{P}(X=x,Y=y) \quad \text{par définition} \\ = \mathbf{P}(X=x)\mathbf{P}(Y=y) \quad \text{par indépendance de } X \text{ et } Y \\ = \mathbf{P}(X=-x)\mathbf{P}(Y=-y) \quad \text{par symétrie de } X \text{ et } Y \\ = \mathbf{P}(X=-x,Y=-y) \quad \text{par indépendance de } X \text{ et } Y \\ = \mathbf{P}(-X=x,-Y=y) \\ = \mathbf{P}(-Z=(x,y)) \quad \text{par définition.}$$

Donc Z = (X, Y) et -Z = (-X, -Y) suivent la même loi (i.e. Z est symétrique si l'on ne restreint pas la définition 2 du préambule au cas des variables réelles).

• Par le théorème 1 du préambule appliqué aux variables Z et -Z et à la fonction $u: X(\Omega) \times Y(\Omega) \to \mathbb{R}$, $(x,y) \mapsto x+y$, on voit alors que u(Z)=X+Y et u(-Z)=-X-Y suivent la même loi, i.e. que la variable X+Y est symétrique ³.

Deux sommes de séries

- **6.** Posons $\ell(u) = \frac{z}{1 uz}$, de sorte que $L(t) = \int_0^t \ell(u) du$.
 - On a $|z| \le 1$ et $z \ne 1$, donc pour tout $t \in [0;1]$, $tz \ne 1$, puisque |tz| < 1 si $t \in [0;1[$, et tz = z si t = 1. Ainsi la fonction $\ell: t \mapsto \frac{z}{1-tz}$ est bien définie sur [0;1], et elle y est alors de classe \mathcal{C}^{∞} comme quotient de la fonction constante $t \mapsto z$ et de la fonction affine $t \mapsto 1-tz$ qui le sont.
 - La fonction $L: t \mapsto \int_0^t \ell(u) \, du$ est donc bien définie sur [0; 1], et par le théorème fondamental du calcul intégral, c'est une primitive de ℓ sur [0; 1]. Comme ℓ est de classe \mathcal{C}^{∞} , sa primitive L l'est aussi.
 - Montrons par récurrence que ⁴ pour tout $n \in \mathbb{N}^*$, $L^{(n)}(t) = \frac{(n-1)!z^n}{(1-tz)^n}$ pour $t \in [0;1]$.
 - \star On a $L' = \ell$ donc la formule est vraie pour n = 1.
 - * Soit $n \in \mathbb{N}^*$ est tel que $\forall t \in [0;1], L^{(n)}(t) = \frac{(n-1)!z^n}{(1-tz)^n}$

Alors en dérivant cette relation (avec la formule $(u^{\alpha})'(t) = \alpha u'(t)u^{\alpha-1}(t)$), on obtient

$$\forall t \in [0; 1], \quad L^{(n+1)}(t) = \frac{(n-1)!z^n \times (-n) \times (-z)}{(1-tz)^{n+1}} = \frac{n!z^{n+1}}{(1-tz)^{n+1}},$$

qui est la formule voulue au rang n+1.

* On conclut par récurrence que l'on a bien, $\forall n \in \mathbb{N}^*, \forall t \in [0;1], L^{(n)}(t) = \frac{(n-1)!z^n}{(1-tz)^n}.$

^{3.} On pourrait avoir envie d'appliquer le 1er point de la question 4 ici, plutôt que se ramener à nouveau au théorème 1, mais on est dans un cadre différent : la variable Z n'est pas à valeurs dans $\mathbb R$ et la fonction $u:(x+y)\mapsto x+y$ n'est pas définie sur $\mathbb R$.

^{4.} On devine la formule en calculant les premières dérivées de $L'=\ell$ au brouillon.

7. Posons x = Re(z). Comme $|z| \le 1$ et $z \ne 1$, on a $x \in [-1; 1[$. Soit $t \in]0; 1]$. Alors :

$$|1 - tz| \ge |\operatorname{Re}(1 - tz)| = |1 - tx| = 1 - tx > 1 - t$$

 $\operatorname{car} x < 1 \text{ et } t > 0 \text{ donc } tx < t \leqslant 1, \operatorname{donc} 1 - tx > 0 \text{ et } 1 - tx > 1 - t. \text{ On a donc bien } |1 - tz| > 1 - t.$

- 8. On applique le théorème de convergence dominée à la suite de fonctions (f_n) où $f_n(t) = \left|\frac{1-t}{1-tz}\right|^n$.
 - * On montre que les fonctions f_n sont bien définies et continues sur]0;1] comme en question 6 De plus par la question 7, on a $\forall t \in]0;1]$, $\left|\frac{1-t}{1-tz}\right| < 1$, donc $f_n(t) = \left|\frac{1-t}{1-tz}\right|^n \underset{n \to +\infty}{\longrightarrow} 0$. Ainsi la suite de fonction $(f_n)_{n \in \mathbb{N}}$ converge simplement vers la fonction nulle sur]0;1].
 - * Comme $\forall t \in]0;1], \left|\frac{1-t}{1-tz}\right| < 1$, on a encore $\forall t \in]0;1], |f_n(t)| = \left|\frac{1-t}{1-tz}\right|^n \leqslant 1$, et la fonction φ constante égale à 1 est intégrable sur]0;1] (car cet intervalle est borné).

Donc le théorème de convergence dominée s'applique et montre que $\int_0^1 \left| \frac{1-t}{1-tz} \right|^n dt \xrightarrow[n \to +\infty]{} \int_0^1 0 dt = 0.$

• On note que la fonction $t \mapsto \frac{z^{n+1}(1-t)^n}{(1-tz)^{n+1}}$ est bien définie et continue sur le segment [0;1] (comme en question **6**), de sorte que son intégrale y est bien définie. De plus par croissance de l'intégrale :

$$\left| \int_0^1 \frac{z^{n+1} (1-t)^n}{(1-tz)^{n+1}} \, \mathrm{d}t \right| \leqslant \frac{|z|^{n+1}}{|1-tz|} \int_0^1 \left| \frac{1-t}{1-tz} \right|^n \, \mathrm{d}t.$$

Or $|z| \leqslant 1$ donc la suite $\left(\frac{|z|^{n+1}}{|1-tz|}\right)_{n\in\mathbb{N}}$ est bornée, et $\int_0^1 \left|\frac{1-t}{1-tz}\right|^n \mathrm{d}t \xrightarrow[n\to+\infty]{} 0$ par le point précédent, donc par encadrement :

$$\int_0^1 \frac{z^{n+1}(1-t)^n}{(1-tz)^{n+1}} dt dt \xrightarrow[n \to +\infty]{} 0.$$

9. Comme la fonction L est de classe \mathcal{C}^{∞} sur [0;1], la formule de Taylor avec reste intégral s'applique à tout ordre $N \in \mathbb{N}$ et donne :

$$\forall N \in \mathbb{N}, \quad L(1) = \sum_{n=0}^{N} \frac{L^{(n)}(0)}{n!} + \int_{0}^{1} \frac{(1-t)^{N}}{N!} L^{(N+1)}(t) dt.$$

Or $L(0) = \int_0^0 \ell(u) du = 0$ et pour tous $n \in \mathbb{N}^*$ et $t \in [0; 1]$, $L^{(n)}(t) = \frac{(n-1)!z^n}{(1-tz)^n}$ (question **6**), donc :

$$\forall N \in \mathbb{N}, \quad L(1) = \sum_{n=1}^{N} \frac{z^n}{n} + \int_0^1 \frac{(1-t)^N z^{N+1}}{(1-tz)^{N+1}} dt.$$

Par la question 8, cette dernière intégrale tend vers 0 quand $N \to +\infty$, donc la série $\sum \frac{z^n}{n}$ converge et en passant à la limite :

$$L(1) = \sum_{n=1}^{+\infty} \frac{z^n}{n}.$$

10. • Les fonctions coordonnées $(t,u) \mapsto t$ et $(t,u) \mapsto u$ sont linéaires donc continues de \mathbb{R}^2 dans \mathbb{R} . La fonction $t \mapsto e^{it}$ est continue de \mathbb{R} dans \mathbb{C} , donc par composition, la fonction $(t,u) \mapsto e^{it}$ est continue de \mathbb{R}^2 dans \mathbb{C} .

Par produit, la fonction $(t, u) \mapsto ue^{it}$ est continue de \mathbb{R}^2 dans \mathbb{C} , donc la fonction $(t, u) \mapsto 1 + ue^{it}$ aussi (par somme avec une fonction constante donc continue).

Enfin, le module $|\cdot|$ est continu de \mathbb{C} dans \mathbb{R} , donc par composition, la fonction $\gamma:(t,u)\mapsto |1+ue^{it}|$ est continue de \mathbb{R}^2 dans \mathbb{R} .

• Soit $a \in]0; \pi[$.

Montrons que la partie $[-a; a] \times [0; 1]$ de \mathbb{R}^2 est fermée et bornée.

- * Elle est bornée car si $(t,u) \in [-a;a] \times [0;1]$, alors $||(t,u)||_2 = \sqrt{t^2 + u^2} \leqslant \sqrt{a^2 + 1}$.
- ★ Elle est fermée car si $((t_n, u_n))_{n \in \mathbb{N}}$ est une suite d'éléments de $[-a; a] \times [0; 1]$ convergeant vers un certain $(t, u) \in \mathbb{R}^2$, alors $(t, u) \in [-a; a] \times [0; 1]$ par passage des inégalités larges à la limite.

Le théorème de compacité assure donc que la fonction continue γ est bornée et atteint ses bornes sur $[-a;a] \times [0;1]$. Ainsi en notant m_a son minimum sur $[-a;a] \times [0;1]$, on a :

$$\forall (t, u) \in [-a; a] \times [0; 1], \quad |1 + ue^{it}| \geqslant m_a$$

et il existe $(t_0, u_0) \in [-a; a] \times [0; 1]$ tel que $m_a = |1 + u_0 e^{it_0}|$.

Or comme en question **6**, on a $z = -e^{it_0}$ de module 1 et distinct de 1 (car $t_0 \in [-a; a] \subset] - \pi; \pi[$), donc $u_0z \neq 1$, i.e. $1 - u_0z = 1 + u_0e^{it_0} \neq 0$, et donc $m_a > 0$.

11. On applique le théorème de dérivation des intégrales à paramètre.

On pose, pour tout $(t, u) \in]-\pi; \pi[\times [0; 1], f(t, u) = \frac{e^{it}}{1 + ue^{it}}.$

 \star Pour tout $u \in [0;1]$, la fonction $t \mapsto f(t,u)$ est de classe \mathcal{C}^1 sur $]-\pi;\pi[$, car $t \mapsto e^{it}$ l'est, et :

$$\frac{\partial f}{\partial t}(t,u) = \frac{ie^{it}(1+ue^{it})-e^{it}iue^{it}}{(1+ue^{it})^2} = \frac{ie^{it}}{(1+ue^{it})^2}.$$

- * Pour tout $t \in]-\pi;\pi[$, la fonction $u \mapsto f(t,u)$ est continue donc intégrable sur le segment [0;1].
- * Pour tout $t \in]-\pi;\pi[$, la fonction $u \mapsto \frac{\partial f}{\partial t}(t,u)$ est continue sur le segment [0;1].
- * Pour tout $a \in]0; \pi[$ et pour tout $(t, u) \in [-a; a] \times [0; 1]$, on a par la question $\mathbf{10}$:

$$\left| \frac{\partial f}{\partial t}(t, u) \right| = \frac{1}{|1 + ue^{it}|^2} \leqslant \frac{1}{m_a^2}$$

et la fonction constante $u\mapsto \frac{1}{m_a^2}$ est intégrable sur [0;1] (car cet intervalle est borné).

Donc le théorème s'applique et montre que la fonction $F: t \mapsto \int_0^1 f(t,u) du$ est bien définie et de classe \mathcal{C}^1 sur tout intervalle [-a;a] où $a \in]0;\pi[$, donc sur leur réunion $]-\pi;\pi[$, et que :

$$\forall t \in]\pi; \pi[, \quad F'(t) = \int_0^1 \frac{ie^{it}}{(1 + ue^{it})^2} du.$$

12. • Soit $t \in]-\pi;\pi[$. On déduit de la formule trouvée ci-dessus, par primitivation directe, que :

$$F'(t) = \left[\frac{-i}{1 + ue^{it}}\right]_{u=0}^{u=1} = \frac{-i}{1 + e^{it}} + i = \frac{ie^{it}}{1 + e^{it}}.$$

Or $1 + e^{it} = e^{it/2}(e^{-it/2} + e^{it/2}) = 2\cos(t/2)e^{it/2}$, donc :

$$F'(t) = \frac{ie^{it/2}}{2\cos(t/2)} = \frac{i(\cos(t/2) + i\sin(t/2))}{2\cos(t/2)} = \frac{i}{2} - \frac{\tan(t/2)}{2}.$$

4

• On déduit de la formule ci-dessus, à nouveau par primitivation directe, et en tenant compte de ce que $t\mapsto -\frac{\tan(t/2)}{2} = -\frac{\sin(t/2)}{2\cos(t/2)} \text{ est de la forme } \frac{u'}{u} \text{ où } u:t\mapsto \cos(t/2) \text{ est strictement positive sur }]-\pi;\pi[,$ l'existence d'une constante $C\in\mathbb{C}$ telle que :

$$\forall t \in]-\pi; \pi[, F(t) = \ln(\cos(t/2)) + \frac{it}{2} + C.$$

Or $F(0) = \int_0^1 \frac{1}{1+u} du = \left[\ln(1+u) \right]_0^1 = \ln(2)$, donc $C = \ln(2)$, de sorte que :

$$\forall t \in]-\pi; \pi[, F(t) = \ln(2\cos(t/2)) + \frac{it}{2}$$

13. Soit $\theta \in]0; 2\pi[$.

• En appliquant la question 9 à $z = e^{i\theta}$, qui vérifie bien $|z| \le 1$ et $z \ne 1$, on voit que la série $\sum \frac{e^{in\theta}}{n}$ converge et que :

$$\sum_{n=1}^{+\infty} \frac{e^{in\theta}}{n} = L(1) = \int_0^1 \frac{e^{i\theta}}{1 - ue^{i\theta}} du.$$

• On note que $-e^{i\theta} = e^{i(\theta - \pi)}$ avec $\theta - \pi \in]-\pi;\pi[$, de sorte que :

$$\int_0^1 \frac{e^{i\theta}}{1 - ue^{i\theta}} du = \int_0^1 \frac{-e^{i(\theta - \pi)}}{1 + ue^{i(\theta - \pi)}} du = -F(\theta - \pi)$$

et ainsi par la question 12 et l'identité trigonométrique $\cos(a-\pi/2)=\sin(a)$:

$$\sum_{n=1}^{+\infty} \frac{e^{in\theta}}{n} = -F(\theta - \pi) = -\ln\left(2\cos\left(\frac{\theta}{2} - \frac{\pi}{2}\right)\right) - \frac{i(\theta - \pi)}{2} = -\ln\left(2\sin\left(\frac{\theta}{2}\right)\right) + \frac{i(\pi - \theta)}{2}.$$

• Comme la série $\sum \frac{e^{in\theta}}{n}$ converge, il en va de même de ses parties réelle et imaginaire $\sum \frac{\cos(n\theta)}{n}$ et $\sum \frac{\sin(n\theta)}{n}$, et en identifiant les parties réelle et imaginaire dans l'égalité précédente, on trouve :

$$\sum_{n=1}^{+\infty} \frac{\cos(n\theta)}{n} = -\ln\left(2\sin\left(\frac{\theta}{2}\right)\right) \quad \text{et} \quad \sum_{n=1}^{+\infty} \frac{\sin(n\theta)}{n} = \frac{\pi - \theta}{2}.$$

Fonction caractéristique d'une variable aléatoire symétrique

 \mathbf{Rq} . Dans les questions $\mathbf{14}$ et $\mathbf{15}$, la symétrie de X ne sert pas.

14. Soit $t \in \mathbb{R}$.

• La variable aléatoire $Y_t = \cos(tX)$ est bornée, comprise entre -1 et 1, donc par la question 2, Y_t est d'espérance finie, i.e. $\Phi_X(t) = \mathbf{E}(Y_t)$ est bien défini, et par croissance de l'espérance :

$$-1 = \mathbf{E}(-1) \leqslant \mathbf{E}(Y_t) = \Phi_X(t) \leqslant \mathbf{E}(1) = 1.$$

Donc la fonction Φ_X est bien définie sur \mathbb{R} et $\forall t \in \mathbb{R}$, $|\Phi_X(t)| \leq 1$.

• De plus, on a évidemment $Y_t = \cos(tX) = \cos(-tX) = Y_{-t}$ puisque cos est une fonction paire, donc $\Phi_X(t) = \mathbf{E}(Y_t) = \mathbf{E}(Y_{-t}) = \Phi_X(-t)$, donc la fonction Φ_X est paire.

15. Par théorème de transfert, $\forall t \in \mathbb{R}$, $\Phi_X(t) = \mathbf{E}(\cos(tX)) = \sum_{n=0}^{+\infty} \cos(tx_n) \mathbf{P}(X = x_n)$.

Donc Φ_X est la somme de la série de fonctions $\sum u_n$, où $u_n: t \mapsto \mathbf{P}(X=x_n) \cos(tx_n)$. On applique alors le théorème de continuité des séries de fonctions.

- \star Les fonctions u_n sont continues sur \mathbb{R} (puisque cos l'est).
- * Pour tout $n \in \mathbb{N}$, on a $||u_n||_{\infty,\mathbb{R}} = \sup_{t \in \mathbb{R}} |u_n(t)| = \mathbf{P}(X = x_n)$, et la série $\sum \mathbf{P}(X = x_n)$ converge, donc la série de fonctions $\sum u_n$ converge normalement, donc uniformément, sur \mathbb{R} .

Ainsi le théorème s'applique et montre que la somme $\Phi_X = \sum_{n=0}^{+\infty} u_n$ est continue sur \mathbb{R} .

- 16. On suppose désormais que X, en plus d'être symétrique, est entière et vérifie la condition \mathcal{D}_{α} (où $\alpha > 0$). Soit $t \in]0; 2\pi[$.
 - On commence par montrer l'indication, i.e. que la série $\sum R_n \cos(nt)$ converge.

Par
$$\mathcal{D}_{\alpha}$$
, on a $R_n \cos(nt) = \mathbf{P}(|X| \ge n) \cos(nt) = \frac{\alpha \cos(nt)}{n} + \underset{n \to +\infty}{\underbrace{O}} \left(\frac{1}{n^2}\right)$.

Or d'après la question 13, la série $\sum \frac{\cos(nt)}{n}$ converge (car $t \in]0; 2\pi[$), et le terme en $\underset{n \to +\infty}{O} \left(\frac{1}{n^2}\right)$ est, par comparaison, le terme général d'une série absolument convergente, donc convergente.

La série $\sum R_n \cos(nt)$ est donc la somme de deux séries convergentes, donc est convergente.

• Montrons que $\Phi_X(t) = \sum_{n=0}^{+\infty} (R_n - R_{n+1}) \cos(nt)$.

Comme cos est paire, on a pour tout $t \in \mathbb{R}$, $\cos(tX) = \cos(t|X|)$, donc

$$\Phi_X(t) = \mathbf{E}(\cos(tX)) = \mathbf{E}(\cos(t|X|)) = \Phi_{|X|}(t).$$

Comme X est entière, |X| est à valeurs dans \mathbb{N} , donc par théorème de transfert 5 :

$$\Phi_X(t) = \Phi_{|X|}(t) = \mathbf{E}(\cos(t|X|)) = \sum_{n=0}^{+\infty} \cos(tn)\mathbf{P}(|X| = n).$$

Or pour tout $n \in \mathbb{N}$, on a $R_n - R_{n+1} = \mathbf{P}(|X| \ge n) - \mathbf{P}(|X| \ge n+1) = \mathbf{P}(|X| = n)$ car X est entière, donc on a bien :

$$\Phi_X(t) = \sum_{n=0}^{+\infty} (R_n - R_{n+1}) \cos(nt).$$

• Montrons que $\Phi_X(t) = 1 + \sum_{n=1}^{+\infty} R_n \left[\cos(nt) - \cos((n-1)t) \right].$

6

^{5.} Sans passer par |X|, le théorème de transfert appliqué à X donne $\Phi_X(t) = \sum_{n=0}^{+\infty} \cos(tx_n) \mathbf{P}(X = x_n)$, où $\{x_n, n \in \mathbb{N}\}$ est une énumération de \mathbb{Z} (cf. remarque initiale), et cela complique l'identification à $\sum_{n=0}^{+\infty} (R_n - R_{n+1}) \cos(nt)$, puisqu'il faut alors passer par une sommation par paquets à la limite du programme (voire hors programme) en PSI.

Puisque les séries $\sum R_n \cos(nt)$ et $\sum (R_n - R_{n+1}) \cos(nt)$ convergent par les points précédents, la série $\sum R_{n+1} \cos(nt)$ converge elle-aussi (comme différence des deux précédentes) et par linéarité :

$$\Phi_X(t) = \sum_{n=0}^{+\infty} (R_n - R_{n+1}) \cos(nt) = \sum_{n=0}^{+\infty} R_n \cos(nt) - \sum_{n=0}^{+\infty} R_{n+1} \cos(nt)$$

$$= R_0 + \sum_{n=1}^{+\infty} R_n \cos(nt) - \sum_{n=1}^{+\infty} R_n \cos((n-1)t)$$

$$= 1 + \sum_{n=1}^{+\infty} R_n \left[\cos(nt) - \cos((n-1)t)\right]$$

puisque $R_0 = P(|X| \geqslant 0) = 1$.

17. • Posons $f_n(t) = \left(R_n - \frac{\alpha}{n}\right) e^{int}$ pour $n \ge 1$ et $t \in \mathbb{R}$.

Les fonctions f_n sont continues sur \mathbb{R} et $||f_n||_{\infty,\mathbb{R}} = \left|R_n - \frac{\alpha}{n}\right| = \underset{n \to +\infty}{O} \left(\frac{1}{n^2}\right)$ par propriété \mathcal{D}_{α} , donc la série de fonctions $\sum f_n$ converge normalement sur \mathbb{R} par comparaison.

Le théorème de continuité des séries de fonctions montre alors que la somme $\sum_{n=1}^{+\infty} f_n$ est bien définie et continue sur \mathbb{R} . Elle est donc en particulier continue en 0, de sorte que :

$$\sum_{n=1}^{+\infty} \left(R_n - \frac{\alpha}{n} \right) e^{int} = \sum_{n=1}^{+\infty} f_n(t) \xrightarrow[t \to 0]{} C = \sum_{n=1}^{+\infty} f_n(0) = \sum_{n=1}^{+\infty} \left(R_n - \frac{\alpha}{n} \right).$$

De plus comme α et les R_n sont réels, on a bien $C \in \mathbb{R}$.

• En séparant les parties réelle et imaginaire dans le point précédent, on obtient puisque $C \in \mathbb{R}$:

$$\sum_{n=1}^{+\infty} \left(R_n - \frac{\alpha}{n} \right) \cos(nt) \xrightarrow[t \to 0]{} C \quad \text{et} \quad \sum_{n=1}^{+\infty} \left(R_n - \frac{\alpha}{n} \right) \sin(nt) \xrightarrow[t \to 0]{} 0.$$

Pour $t \in]0; 2\pi[$, les séries $\sum \frac{\cos(nt)}{n}$ et $\sum R_n \cos(nt)$ convergent (questions 13 et 16) donc on a :

$$\sum_{n=1}^{+\infty} R_n \cos(nt) = \sum_{n=1}^{+\infty} \left(R_n - \frac{\alpha}{n} \right) \cos(nt) + \alpha \sum_{n=1}^{+\infty} \frac{\cos(nt)}{n}$$

$$= \underset{t \to 0}{O} (1) - \alpha \ln \left(2 \sin \left(\frac{t}{2} \right) \right)$$

$$= \underset{t \to 0}{O} (1) - \alpha \ln(t) - \alpha \ln \left(\frac{\sin(t/2)}{t/2} \right)$$

$$= -\alpha \ln(t) + \underset{t \to 0}{O} (1) \quad \operatorname{car} \frac{\sin(t/2)}{t/2} \xrightarrow[t \to 0]{} 1 \operatorname{donc} \ln(\frac{\sin(t/2)}{t/2}) = \underset{t \to 0}{O} (1)$$

$$= \underset{t \to 0+}{O} (\ln(t)).$$

De même pour $t \in]0; 2\pi[$, la série $\sum \frac{\sin(nt)}{n}$ converge (question 13), donc la série $\sum R_n \sin(nt)$ converge comme combinaison linéaire de deux séries convergentes ⁶, et par linéarité :

$$\sum_{n=1}^{+\infty} R_n \sin(nt) = \sum_{n=1}^{+\infty} \left(R_n - \frac{\alpha}{n} \right) \sin(nt) + \alpha \sum_{n=1}^{+\infty} \frac{\sin(nt)}{n}$$
$$= \sum_{t=0}^{\infty} (1) + \alpha \frac{\pi - t}{2} = \frac{\alpha \pi}{2} + \sum_{t=0}^{\infty} (1).$$

^{6.} On peut aussi le démontrer directement comme dans l'indication en question 16, en remplaçant cos par sin.

- **18.** Soit $t \in]0; \frac{\pi}{2}[$.
 - Par la dernière formule de la question 16, on a $\Phi_X(t) = 1 + \sum_{n=1}^{+\infty} R_n [\cos(nt) \cos((n-1)t)].$

Avec l'identité $\cos((n-1)t) = \cos(nt)\cos(t) + \sin(nt)\sin(t)$ et la question 17 (qui garantit que toutes les sommes écrites sont bien définies), on obtient :

$$\Phi_X(t) = 1 + \sum_{n=1}^{+\infty} R_n \left[(1 - \cos(t)) \cos(nt) - \sin(t) \sin(nt) \right]$$

$$= 1 + \underbrace{(1 - \cos(t)) \sum_{n=1}^{+\infty} R_n \cos(nt)}_{A(t)} - \underbrace{\sin(t) \sum_{n=1}^{+\infty} R_n \sin(nt)}_{B(t)}.$$

Or $1 - \cos(t) = \underset{t \to 0}{O}(t^2)$ et $\sum_{n=1}^{+\infty} R_n \cos(nt) = \underset{t \to 0^+}{O}(\ln(t))$, donc $A(t) = \underset{t \to 0^+}{O}(t^2 \ln(t))$, et $t \ln(t) \xrightarrow[t \to 0^+]{} 0$ par croissances comparées, donc $A(t) = \underset{t \to 0^+}{o}(t)$.

De même,
$$\sin(t) \underset{t\to 0}{\sim} t$$
 et $\sum_{n=1}^{+\infty} R_n \sin(nt) = \frac{\alpha\pi}{2} + \underset{t\to 0^+}{o}(1)$, donc $B(t) = \frac{\alpha\pi t}{2} + \underset{t\to 0^+}{o}(t)$.

Donc on a bien:

$$\Phi_X(t) = 1 - \frac{\alpha \pi t}{2} + o_{t \to 0^+}(t).$$

• Ainsi Φ_X est dérivable à droite en 0 et que sa dérivée à droite en 0 est $(\Phi_X)'_d(0) = -\frac{\alpha\pi}{2}$, puisque :

$$\frac{\Phi_X(t) - \Phi_X(0)}{t} = \frac{\Phi_X(t) - 1}{t} = -\frac{\alpha\pi}{2} + \underset{t \to 0^+}{o}(1) \underset{t \to 0^+}{\longrightarrow} -\frac{\alpha\pi}{2}.$$

Mais Φ_X est paire (question 14), donc par symétrie, Φ_X est dérivable à gauche en 0 et sa dérivée à gauche en 0 est $(\Phi_X)'_g(0) = \frac{\alpha\pi}{2}$.

Comme les dérivées de Φ_X à gauche et à droite en 0 sont distinctes, Φ_X n'est pas dérivable en 0 (son graphe y présente un point anguleux).

Convergence simple de la suite des fonctions caractéristiques des variables aléatoires \mathcal{M}_n

 \mathbf{Rq} . Toutes les espérances écrites dans les questions suivantes existent au vu de la question $\mathbf{2}$: toute variable aléatoire bornée admet une espérance.

19. Soit $t \in \mathbb{R}$. Par définition de Φ_{X+Y} et par linéarité de l'espérance :

$$\Phi_{X+Y}(t) = \mathbf{E}(\cos(t(X+Y))) = \mathbf{E}(\cos(tX)\cos(tY) - \sin(tX)\sin(tY))$$

= $\mathbf{E}(\cos(tX)\cos(tY)) - \mathbf{E}(\sin(tX)\sin(tY)).$

Or les variables X et Y sont indépendantes, donc les variables $\cos(tX)$ et $\cos(tY)$ (resp. $\sin(tX)$ et $\sin(tY)$) le sont aussi, donc par propriété de l'espérance d'un produit de deux variables indépendantes :

$$\Phi_{X+Y}(t) = \mathbf{E}(\cos(tX))\mathbf{E}(\cos(tY)) - \mathbf{E}(\sin(tX))\mathbf{E}(\sin(tY))$$

= $\Phi_X(t)\Phi_Y(t) - \mathbf{E}(\sin(tX))\mathbf{E}(\sin(tY)).$

Mais X est symétrique et la fonction $f_t: x \mapsto \sin(tx)$ est impaire, donc par la question 4, $\mathbf{E}(\sin(tX)) = 0$, donc on a bien :

$$\forall t \in \mathbb{R}, \quad \Phi_{X+Y}(t) = \Phi_X(t)\Phi_Y(t).$$

20. On a
$$M_n = \frac{S_n}{n}$$
 où $S_n = \sum_{k=1}^n X_k$.

- Montrons par récurrence sur $n \in \mathbb{N}^*$ que S_n est symétrique et que $\forall t \in \mathbb{R}, \Phi_{S_n}(t) = (\Phi_{X_1}(t))^n$.
 - * C'est clair pour n=1 puisque $S_1=X_1$.
 - * Soit $n \in \mathbb{N}^*$ pour lequel S_n est symétrique et $\forall t \in \mathbb{R}, \Phi_{M_n}(t) = (\Phi_{X_1}(t))^n$. Alors, puisque X_{n+1} est indépendant de S_n (c'est admis dans le préambule, et c'est un cas particulier

du lemme des coalitions), on voit par la question 5 que $S_{n+1} = S_n + X_{n+1}$ est symétrique, et par la question 19 que $\forall t \in \mathbb{R}, \ \Phi_{S_{n+1}}(t) = \Phi_{S_n}(t)\Phi_{X_{n+1}}(t).$

Or X_{n+1} suit la même loi que X_1 , donc $\cos(tX_{n+1})$ suit la même loi que $\cos(tX_1)$ par le théorème 1 du préambule, donc $\forall t \in \mathbb{R}$, $\Phi_{X_{n+1}}(t) = \mathbf{E}(\cos(tX_{n+1})) = \mathbf{E}(\cos(tX_1)) = \Phi_{X_1}(t)$. Ainsi $\forall t \in \mathbb{R}$, $\Phi_{S_{n+1}}(t) = (\Phi_{X_1}(t))^n \Phi_{X_1}(t) = (\Phi_{X_1}(t))^{n+1}$.

On conclut par récurrence que pour tout $n \in \mathbb{N}^*$, S_n est symétrique et $\forall t \in \mathbb{R}$, $\Phi_{S_n}(t) = (\Phi_{X_1}(t))^n$.

• Puisque S_n est symétrique, $M_n = \frac{S_n}{n}$ l'est aussi, et on a alors :

$$\forall t \in \mathbb{R}, \quad \Phi_{M_n}(t) = \mathbf{E}(\cos(tM_n)) = \mathbf{E}\left(\cos\left(\frac{t}{n}S_n\right)\right) = \Phi_{S_n}\left(\frac{t}{n}\right) = \left(\Phi_{X_1}\left(\frac{t}{n}\right)\right)^n.$$

21. • Soit t > 0. Puisque X_1 est entière, symétrique et vérifie \mathcal{D}_{α} , la question **18** s'applique et donne :

$$\Phi_{X_1}\left(\frac{t}{n}\right) = 1 - \frac{\pi \alpha t}{2n} + \underset{n \to +\infty}{o} \left(\frac{1}{n}\right).$$

Donc vu la question **20**, $\Phi_{M_n}(t) = \left(1 - \frac{\pi \alpha t}{2n} + \underset{n \to +\infty}{o} \left(\frac{1}{n}\right)\right)^n = \exp\left(n \ln\left(1 - \frac{\pi \alpha t}{2n} + \underset{n \to +\infty}{o} \left(\frac{1}{n}\right)\right)\right)$ pour n assez grand.

Or $\ln\left(1 - \frac{\pi\alpha t}{2n} + o_{n \to +\infty}\left(\frac{1}{n}\right)\right) \underset{n \to +\infty}{\sim} -\frac{\pi\alpha t}{2n}$, donc $n\ln\left(1 - \frac{\pi\alpha t}{2n} + o_{n \to +\infty}\left(\frac{1}{n}\right)\right) \underset{n \to +\infty}{\longrightarrow} -\frac{\pi\alpha t}{2}$.

On obtient ainsi

$$\forall t > 0, \quad \Phi_{M_n}(t) \underset{n \to +\infty}{\longrightarrow} \exp\left(-\frac{\pi \alpha t}{2}\right).$$

• Comme Φ_{M_n} est paire (question 14), on a alors pour t < 0:

$$\Phi_{M_n}(t) = \Phi_{M_n}(-t) \underset{n \to +\infty}{\longrightarrow} \exp\left(-\frac{\pi\alpha(-t)}{2}\right) = \exp\left(-\frac{\pi\alpha|t|}{2}\right).$$

• Enfin ce résultat est évident pour t = 0 (car $\Phi_{M_n}(0) = 1 = \exp(0)$).

On a donc bien : $\forall t \in \mathbb{R}$, $\Phi_{M_n}(t) \underset{n \to +\infty}{\longrightarrow} \exp\left(-\frac{\pi \alpha |t|}{2}\right)$.

22. Posons $g: t \mapsto \exp\left(-\frac{\pi\alpha|t|}{2}\right)$.

On a, pour tout $n \in \mathbb{N}^*$, $\Phi_{M_n}(2n\pi) = (\Phi_{X_1}(2\pi))^n = (\mathbf{E}(\cos(2\pi X_1))^n = 1$ puisque X_1 est entière, donc $\cos(2\pi X_1) = 1$ et donc $\mathbf{E}(\cos(2\pi X_1)) = 1$. Ainsi :

$$|\Phi_{M_n}(2n\pi) - g(2n\pi)| = 1 - \exp(-\pi^2 \alpha n) \le ||\Phi_{M_n} - g||_{\infty, \mathbb{R}}.$$

Comme $1 - \exp(-\pi^2 \alpha n)$ tend vers 1 quand $n \to +\infty$, la norme $\|\Phi_{M_n} - g\|_{\infty,\mathbb{R}}$ ne tend pas vers 0 quand $n \to +\infty$, de sorte que la convergence de la suite $(\Phi_{M_n})_{n \in \mathbb{N}}$ vers g n'est pas uniforme sur \mathbb{R} .