Sur l'adjoint d'un endomorphisme

Exercice 1. Si E est un espace euclidien et si $p \in \mathcal{L}(E)$ est un projecteur quelconque, que dire de p^* ? Que dire d'un projecteur p si $p = p^*$?

Exercice 2. Soit E euclidien et $u \in \mathcal{L}(E)$ tel que $\forall x \in E, (u(x)|x) = 0$. Montrer que $u^* = -u$.d

Exercice 3 (Calcul d'adjoint d'un endomorphisme de rang 1). Soit E un espace vectoriel euclidien et $(a,b) \in E^2$ deux vecteurs linéairement indépendants. Soit $u \in \mathcal{L}(E)$ défini par $\forall x \in E, u(x) = (a|x)b$. Déterminer explicitement u^* .

Exercice 4 (Norme d'opérateur des F.L.). Soit (E, (||)) un espace euclidien. Pour toute forme linéaire $\varphi \in E^* = \mathcal{L}(E, \mathbb{R})$, on note : $||\varphi||_{op}$ la norme subordonnée à la norme euclidienne sur E.

- a) Définir cette norme $||\varphi||_{op}$
- b) On sait que pour tout $\varphi \in E^*$, il existe un unique vecteur $x_{\varphi} \in E$ tel que $\varphi : y \in E \mapsto (x_{\varphi}|y)$. Montrer que $||\varphi||_{op} = ||x_{\varphi}||$.

Autrement dit, l'isomorphisme de Riesz : $(E, || ||) \to (E^*, || ||_{op}), x \mapsto (x | \cdot)$ est une isométrie.

Exercice 5 (Déf. "polarisée" de la norme d'opérateur, et norme de l'adjoint). Soit $u \in \mathcal{L}(E)$ où E est un espace euclidien. On note ||u|| la norme subordonnée à la norme euclidienne et B la boule unité fermée.

- a) Soit $x \in E$, montrer que $||x|| = \sup\{(x|y), y \in B\}$.
- b) En déduire que :

$$||u|| \stackrel{def}{=} \sup\{||u(x)||, x \in B\} \stackrel{prop}{=} \sup\{(u(x)|y), x \in B, y \in B\}.$$

b) En déduire que : $||u|| = ||u^*||$

Exercice 6. Soit E un espace euclidien. Un élément $f \in \mathcal{L}(E)$ est dit normal si, et seulement si, il commute avec son adjoint.

- a) Donner des exemples d'endomorphismes normaux.
- b) Déterminer matriciellement tous les endomorphismes normaux d'un e.v. de dim. 2.
- c) Montrer que si E est euclidien de dim. quelconque et $f \in \mathcal{L}(E)$ est normal et si F est un s.e.v. de E stable par f alors F est aussi stable par f^* , autrement dit que F^{\perp} est stable par f.

Indication: on pourra raisonner matriciellement.

Isométries vectorielles et matrices orthogonales

Exercice 7. Soit $(a,b,c) \in \mathbb{R}^3$, $\sigma = ab + bc + ca$ et S = a + b + c et la matrice $M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$.

- a) Montrer que $M \in O_3(\mathbb{R}) \Leftrightarrow \sigma = 0$ et $S \in \{-1, 1\}$.
- b) Montrer que $M \in SO_3(\mathbb{R}) \Leftrightarrow \sigma = 0$, et S = 1.
- c) Montrer que $M \in SO_3(\mathbb{R})$ si, et seulement si, il existe $k \in [0, \frac{4}{27}]$ tel que a, b, c soient les racines du polynôme $X^3 X^2 + k$.
 - d) Justifier que si $M \in SO_3(\mathbb{R})$ alors $a^3 + b^3 + c^3 \in [5/9, 1]$.

Exercice 8 (Grand classique, incontournable des concours divers). Soit $A = (a_{i,j}) \in O_n(\mathbb{R})$. Montrer que

- a) $n \stackrel{(1)}{\leq} \sum_{i,j} |a_{i,j}| \stackrel{(2)}{\leq} n\sqrt{n}$,
- b) $\left| \sum_{i,j} a_{i,j} \right| \le n$.
- c) Trouver une matrice dans $O_2(\mathbb{R})$ puis une matrice dans $O_4(\mathbb{R})$ pour lesquelles il y a égalité dans (2).
- d) Montrer que si n est impair et $n \ge 3$, l'inégalité (2) est toujours stricte.

Exercice 9 (Endomorphisme de multiplication, orthogonal ssi la matrice est orthogonale). Soit $A \in M_n(\mathbb{R})$ et $f_A : M_n(\mathbb{R}) \to M_n(\mathbb{R})$, $M \mapsto AM$.

Déterminer la C.N.S. sur A pour que f_A soit un isométrie de l'e.v. $M_n(\mathbb{R})$ muni de son p.s. canonique.

Exercice 10. Soit (E, |) un espace euclidien et $x \in E$.

Montrer l'équivalence entre les deux propriétés suivantes :

- (i) il existe une b.o.n. (e_1, \ldots, e_n) de E telle que $x = e_1 + \cdots + e_n$.
- (ii) $||x|| = \sqrt{n}$

Indication pour le sens indirect : on pourra commencer par le cas n=2 et penser en terme de rotation

Endomorphismes symétriques et théorème spectral

Exercice 11 (Une autre démonstration « hermitienne » du résultat clef sur les matrices symétriques). Soit $A \in S_n(\mathbb{R})$ une matrice réelle symétrique. Démontrer que toutes les valeurs propres de A dans \mathbb{C} sont en fait réelles, en remarquant d'abord que pour tout $X \in M_{n,1}(\mathbb{C})$, ${}^t\overline{X}.A.X \in \mathbb{R}$.

Exercice 12 (Quasiment du cours). Soit (E, (||)) euclidien et $u \in \mathcal{L}(E)$ un endomorphisme symétrique. On note $||u|| = \sup_{\|x\|=1} ||u(x)||$ la norme d'opérateur de u (subordonnée au choix de la norme euclidienne dans E) et $\rho(u) = \max_{\lambda \in \mathrm{Sp}(u)} |\lambda|$ le rayon spectral de u.

Alors
$$||u|| \stackrel{\text{(1)}}{=} \rho(u) \stackrel{\text{(2)}}{=} \max_{||x||=1} |(u(x)|x)|.$$

Exercice 13 (Pour réviser la diagonalisation). Soit $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$. Déterminer $D \in D_3(\mathbb{R})$ et $P \in D_3(\mathbb{R})$ $O_3(\mathbb{R})$ telles que $A = PDP^{-1}$.

Exercice 14 (Racine n-ièmes d'endo. symétriques, resp. d'endo. sym. pos., CCINP MP 2021). Soit E un \mathbb{R} -espace vectoriel euclidien de dimension n, u un endomorphisme symétrique de E.

- a) Soit p un entier naturel impair.
 - i) Montrer l'existence d'un endomorphisme symétrique v tel que $v^p = u$
 - ii) Montrer que si v est un endomorphisme symétrique tel que $v^p = u$ alors v possède les mêmes sous-espaces propres et le même nombre de valeurs propres distinctes que u.
 - iii) Montrer l'unicité de l'endomorphisme symétrique v tel que $v^p = u$.
- b) Soit p un entier naturel pair et non nul.
 - i) A-t-on les mêmes résultats?
 - ii) Que peut-on dire si u est positif? (c'est à dire $Sp(u) \subset \mathbb{R}_+$)
 - iii) Que peut-on dire si u et v sont positifs?

Exercice 15 (Utilisation de la réduction des matrices symétriques réelles). Soit $A \in M_n(\mathbb{R})$. Montrer que $|\det(A)|^{2/n} \le \frac{1}{n}||A||^2$ (où ||A|| est la norme euclidienne canonique).

Exercice 16 (Décomposition utile des endomorphismes symétriques positifs en endo. de rang 1 et réciproque...). Pour E euclidien, $u \in \mathcal{L}(E)$ symétrique positif, (e_1, \ldots, e_n) une b.o.n. de diagonalisation de u, et $0 \le \lambda_1 \le 1$ $\dots \lambda_n$ son spectre, on a pour tout $x \in E$:

$$u(x) = \lambda_1 x_1 e_1 + \dots + \lambda_n x_n e_n = \lambda_1 (x|e_1) e_1 + \dots + \lambda_n (x|e_n) e_n.$$

En posant $\mu_i = \sqrt{\lambda_i}$ et $u_i = \mu_i e_i$ cette égalité peut s'écrire :

$$u(x) = \sum_{i=1}^{n} (x|u_i)u_i \quad (*)$$

Intérêt de la formule (*):

Dans la formule (*) qu'on vient d'obtenir (u_1, \ldots, u_n) est une famille orthogonale, cependant on peut s'intéresser aux propriétés plus générale des endomorphismes de la forme (*).

Soit $(u_1, \ldots, u_r) \in E^r$ une famille quelconque de vecteurs de E et $f: x \in E \mapsto \sum_{i=1}^{r} (x|u_i)u_i$.

Montrer qu'alors :

- (i) f est symétrique positif,
- (ii) $\ker(f) = \bigcap_{i=1}^r \operatorname{Vect}(u_i)^{\perp} = \operatorname{Vect}(u_1, \dots, u_r)^{\perp}$
- (iii) Im $f = \text{Vect}(u_1, \dots, u_r)$

Exercice 17 (Un peu de topologie). a) On note $S_n^+(\mathbb{R})$ l'ensemble des matrices symétriques positives dans $M_n(\mathbb{R})$. Montrer que $S_n^+(\mathbb{R})$ est un fermé de $M_n(\mathbb{R})$.

- b) Est-ce que $S_n^{++}(\mathbb{R})$ est un ouvert de $M_n(\mathbb{R})$?
- c) Montrer que $S_n^{++}(\mathbb{R})$ est un ouvert de $S_n(\mathbb{R})$. d) Montrer que $S_n^{++}(\mathbb{R})$ est exactement l'intérieur de $S_n^+(\mathbb{R})$ dans $S_n(\mathbb{R})$.