D.M. 12 : Conditionnement d'une matrice, cas des matrices symétriques réelles

Pour le lundi 6 février 2023

Avertissement: Dans ce problème, on identifie \mathbb{K}^n avec $M_{n,1}(\mathbb{K})$. Ainsi, pour $A \in M_n(\mathbb{K})$ et $x \in \mathbb{K}^n$, on écrira donc le produit A.x en interprétant x comme une matrice colonne. Pour les calculs on utilisera le package numpy.linalg avec la documentation du Concours Centrale.

Partie I: Un exemple d'introduction

Quand on étudie un système linéaire de n équations à n inconnues à coefficients recels ou complexes, on peut se poser la question suivante : si $x \in \mathbb{K}^n$ est l'unique solution du système Ax = b, avec A inversible comment sera modifiée cette solution si les coefficients du second membre ou de la matrice sont modifiés?

Q1) Considérons par exemple le système Ax = b, avec :

$$A = \begin{pmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{pmatrix}, \quad b = \begin{pmatrix} 32 \\ 23 \\ 33 \\ 31 \end{pmatrix}$$

Déterminer, à l'aide de numpy, l'unique solution x de ce système. (Par défaut numpy travaille avec des flottants, ce qui suffira ici.)

On modifie le second membre en :

$$b' = b + \delta = \begin{pmatrix} 32, 1 \\ 22, 9 \\ 33, 1 \\ 30, 9 \end{pmatrix} \quad \text{où on note } \delta \coloneqq \begin{pmatrix} 0, 1 \\ -0, 1 \\ 0, 1 \\ -0.1 \end{pmatrix}$$

- Q2) Déterminer avec numpy:
 - a) la solution x' du système Ax' = b'.
 - b) l'écart relatif ||x'-x||/||x|| et l'écart relatif ||b'-b||/||b|| en prenant pour norme des vecteurs la norme euclidienne canonique.
- $\mathbf{Q3}$) De même si on perturbe la matrice en prenant :

$$A' = A + \Delta = \begin{pmatrix} 10 & 7 & 8, 1 & 7, 2 \\ 7, 08 & 5, 04 & 6 & 5 \\ 8 & 5, 98 & 9, 89 & 9 \\ 6, 99 & 4, 99 & 9 & 9, 98 \end{pmatrix}$$

en gardant le second membre initial, calculer la nouvelle solution x'' et l'écart relatif entre x'' et x

Le théorème et la définition qui suivent permettent d'étudier plus en détail ce phénomène. Pour le formuler, rappelons que si $\| \|$ est une norme sur \mathbb{K}^n et $A \in M_n(\mathbb{K})$, l'égalité :

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$$

définit une norme $A \mapsto ||A||$ sur $M_n(\mathbb{K})$ dite norme matricielle induite par la norme sur \mathbb{K}^n (ou subordonnée à cette norme). C'est la norme de l'application linéaire $x \mapsto Ax$.

1

Partie II: Théorème et définition du conditionnement

Théorème 1 : Soient $x \mapsto ||x||$ une norme sur \mathbb{K}^n , $A \mapsto ||A||$ la norme matricielle induite, A une matrice dans $GL_n(\mathbb{K})$ et x dans \mathbb{K}^n solution du système Ax = b. Si x' est la solution du système perturbé Ay = b', on a alors :

$$\frac{\|x' - x\|}{\|x\|} \le \|A\| . \|A^{-1}\| \frac{\|b' - b\|}{\|b\|}.$$

Si x'' est la solution d'un système perturbé A'y = b, on a alors :

$$\frac{\|x'' - x\|}{\|x''\|} \le \|A\| \|A^{-1}\| \frac{\|A' - A\|}{\|A\|}.$$

Q4) Démontrer le théorème 1. On pourra d'abord montrer que $||x'-x|| \le ||A^{-1}|| ||b'-b||$.

Le théorème 1 amène à poser la définition suivante :

Définition 1 : Soit $A \mapsto ||A||$ une norme matricielle induite par une norme vectorielle $x \mapsto ||x||$. Si A est une matrice réelle ou complexe inversible, alors le conditionnement de A relativement à cette norme est la quantité :

cond
$$(A) = ||A|| \cdot ||A^{-1}||$$
.

Remarque 1 : Le conditionnement n'est défini que pour une matrice inversible et dépend du choix d'une norme matricielle subordonnée.

On notera $\operatorname{cond}_{\infty}$, cond_1 et cond_2 les conditionnements associés respectivement aux trois normes classiques de \mathbb{K}^n .

Q5) Calcul de la norme subordonnée à la norme euclidienne canonique : si $M \in M_n(\mathbb{R})$, on note $||M||_2$ la norme subordonnée à la norme euclidienne canonique dans \mathbb{R}^n .

Montrer que si M est une matrice symétrique réelle alors :

$$||M||_2 = \rho(M).$$

où $\rho(M)$ est le rayon spectral de M i.e. $\rho(M) = \max\{|\lambda|, \lambda \in \operatorname{Sp}(M)\}.$

Sparadrap pour les 3/2: on va montrer en cours que toutes les matrices symétriques réelles sont diagonalisables dans une base orthonormée. Autrement dit il existe une b.o.n. (e_1, \ldots, e_n) de \mathbb{R}^n telle que pour tout $i \in [1, n]$, $Me_i = \lambda_i e_i$.

- **Q6)** La matrice A de la **Q1** est symétrique réelle. Calculer, à l'aide de numpy, les 4 valeurs propres de A et en déduire son conditionnement $\operatorname{cond}_2(A)$ pour la norme euclidienne canonique.
- Q7) Des propriétés immédiates du conditionnement :

Soit $A \mapsto ||A||$ une norme matricielle induite par une norme vectorielle $x \mapsto ||x||$. Pour toute matrice inversible A à coefficients réels complexes, montrer que :

- a) $\operatorname{cond}(A) \in [1, +\infty[$
- b) $\operatorname{cond}(A) = \operatorname{cond}(A^{-1})$
- c) $\forall \alpha \in \mathbb{K}^*$, $\operatorname{cond}(\alpha A) = \operatorname{cond}(A)$.

Remarque : un système de Cramer Ax = b sera dit bien conditionné si cond(A) est proche de 1 et mal conditionné si cond(A) est proche de $+\infty$. Evidemment le mot « proche » ne veut rien dire en soi... mais disons que l'exemple de la Q6 n'est pas assez « proche » de 1.

Partie III : Formules pour le conditionnement en norme euclidienne (cas réel)

La propriété de la question suivante est très importante, elle est traitée aussi à l'exercice 12 de la planche R4:

- Q8) Expression de la norme subordonnée à la norme euclidienne canonique :
 - a) Soit $S \in S_n(\mathbb{R})$ une matrice symétrique positive c'est-à-dire (cette déf. sera donnée dans le cours) telle que $\operatorname{Sp}(S) \subset \mathbb{R}^+$. On note (x|y) le p.s. canonique de deux vecteurs de \mathbb{R}^n . Montrer que

$$||S||_2 = \max_{||x||=1} (Sx|x)$$

b) Soit $A \in M_n(\mathbb{R})$ une matrice quelconque qu'on pourra supposer non nulle. En appliquant la question précédente à $S = A^{\mathsf{T}}.A$, montrer que :

$$||A^{\mathsf{T}}.A||_2 = ||A||_2^2$$

En déduire aussi que $||A||_2 = ||A^{\mathsf{T}}||_2$.

- c) En déduire que $||A||_2^2 = \rho(A^{\mathsf{T}}.A)$.
- **Q9)** Pour une matrice $A \in GL_n(\mathbb{R})$ quelconque les valeurs propres ordonnées $0 < \mu_{\min} < \cdots < \mu_{\max}$ de la matrice symétrique (définie positive) $A^{\mathsf{T}}.A$ sont appelées valeurs singulières de A. Montrer que :

$$\operatorname{cond}_2(A) = \sqrt{\frac{\mu_{\max}}{\mu_{\min}}}.$$

Dans le cas particulier où A est symétrique positive, exprimer $\operatorname{cond}_2(A)$ directement à l'aide des valeurs propres de A.

Q10) Combien vaut cond₂(A) si $A \in O_n(\mathbb{R})$?

Partie IV : Le conditionnement et la continuité des valeurs propres

Comme on vient d'étudier comme les solutions x de Ax = b évoluent par perturbation, pur peut se demander comment le spectre d'une matrice évolue par perturbation, et là encore le conditionnement apparaît dans le :

Théorème de Bauer-Fike (1960) Soit $A \in M_n(\mathbb{C})$ une matrice diagonalisable et $E \in M_n(\mathbb{C})$ quelconque. Soit μ une valeur propre de A + E. Alors la distance entre μ et $\mathrm{Sp}(A)$ vérifie :

$$d(\mu, \operatorname{Sp}(A)) \le \operatorname{cond}(P)||E||,$$

où P est la matrice d'une base de vecteurs propres de A.

Plutôt que de démontrer ce théorème général ici (voir Wikipédia), on va s'intéresser au cas des matrices A symétriques où l'on va, mieux, pouvoir suivre continûment chaque valeur propre par perturbation. Pour cela, on démontre un résultat qui a bien d'autres applications :

Partie IV-1 : théorème de Courant-Fischer

Notation : Soit $A \in M_n(\mathbb{R})$. On appelle quotient de Rayleigh associé à cette matrice l'application :

$$R_A: x \in \mathbb{R}^n - \{0\} \longmapsto R_A(x) = \frac{\langle Ax \mid x \rangle}{\|x\|_2^2}$$

Soit A une matrice symétrique réelle de valeurs propres :

$$\lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$$

et $\{e_1, e_2, \dots, e_n\}$ une base orthonormée de vecteurs propres associés avec, pour tout entier k compris entre 1 et $n, Ae_k = \lambda_k e_k$. Pour tout $k \in [1, n]$, on note :

$$V_k := \operatorname{Vect}(e_1, \dots, e_k) = \operatorname{Vect}(e_{k+1}, \dots, e_n)^{\perp}$$

Q11) Montrer que pour tout $k \in [1, n]$

$$\left\{ \begin{array}{l} \lambda_k = \sup \left\{ R_A(x) \mid x \in V_k \setminus \{0\} \right\} \\ \\ \lambda_1 = \inf \left\{ R_A(x) \mid x \in \mathbb{R}^n \setminus \{0\} \right\} \\ \\ \lambda_k = \inf \left\{ R_A(x) \mid x \in V_{k-1}^{\perp} \setminus \{0\} \right\} \end{array} \right. \quad (2 \le k \le n)$$

(On pourra ne montrer que les égalités sur les sup., la preuve du résultat sur les inf. étant analogue).

Q12) Dans cette question, on obtient une autre caractérisation des λ_i qui ne fait plus références aux e_i .

Notation : Pour tout $k \in [1, n]$, on désigne par E_k l'ensemble des sous-espaces vectoriels de dimension k de \mathbb{R}^n .

Pour tout s.e.v. V de \mathbb{R}^n , on note :

$$\mu_A(V) = \sup\{R_A(x), x \in V \setminus \{0\}\}\$$

On va démontrer le :

Théorème : (Courant-Fischer) Soit A une matrice symétriques réelle de valeurs propres :

$$\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$$

alors pour tout $k \in [1, n]$,

$$\lambda_k = \inf \left\{ \mu_A(V) \mid V \in E_k \right\}$$

Pour démontrer ce théorème, on note provisoirement $\alpha_k = \inf \{ \mu_A(V) \mid V \in E_k \}$ pour $k \in [1, n]$.

- a) Montrer que pour tout $k \in [1, n], \alpha_k \leq \lambda_k$.
- b) Soit $V \in E_k$, montrer que $V \cap V_{k-1}^{\perp} \neq \{0\}$.
- c) Montrer que pour $y \in V \cap V_{k-1}^{\perp} \setminus \{0\}$:

$$\lambda_k \le R_A(y) \le \mu_A(V)$$

d) Conclure qu'on a bien l'égalité $\alpha_k = \lambda_k$.

Partie IV-2 : application à la continuité des v.p.

 $\mathbf{Q13})$ Le but de cette partie est de démontrer le théorème de continuité suivant :

Soit $A:[a,b] \longrightarrow S_n(\mathbb{R})$ une application continue. Si pour tout t dans [a,b] on note:

$$\lambda_1(t) \le \lambda_2(t) \le \ldots \le \lambda_n(t)$$

les valeurs propres de A(t) rangées dans l'ordre croissant, alors les fonctions λ_k sont continues de [a,b] dans $\mathbb R$

Notation: Pour $t \in [a, b]$, soit $(e_1(t), e_2(t), \dots, e_n(t))$ une base orthonormale de vecteurs propres de A(t), avec : $A(t)e_k(t) = \lambda_k(t)e_k(t)$.

On note $V_k(t) = \text{Vect}(e_1(t), \dots, e_k(t)) = \text{Vect}(e_{k+1}(t), \dots, e_n(t))^{\perp}$.

Soient t_0 et t deux éléments de [a,b]. Montrer que :

- a) $\lambda_k(t) \leq \mu_{A(t)}(V_k(t_0))$ puis que :
- b) $\lambda_k(t) \le \lambda_k(t_0) + \delta_k(t_0)$ où $\delta_k(t_0) := \sup \{ R_{A(t) A(t_0)}(x) \mid x \in V_k(t_0) \{0\} \}$
- c) Montrer d'autre part que : $\delta_k(t_0) \leq ||A(t) A(t_0)||_2$
- d) en déduire que :

$$|\lambda_k(t) - \lambda_k(t_0)| \le ||A(t) - A(t_0)||_2$$

et la conclusion.