DEVOIR SURVEILLÉ 4 (4H)

Les calculatrices et autres appareils électroniques ne sont pas autorisés.

On s'intéresse ici aux propriétés des fonctions polylogarithmes, définies comme séries entières et à leur prolongement grâce à une représentation intégrale. On établit aussi quelques formules générales et on complète l'étude par celle du cas particulier du dilogarithme.

Partie I: le polylogarithme

Dans toute cette partie, α est un réel fixé.

1) Déterminer le rayon de convergence de la série entière L_{α} définie par :

$$L_{\alpha}(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^{\alpha}}.$$

- 2) Justifier que l'application L_{α} est de classe C^{∞} sur] 1, 1[...
- 3) Montrer que:

$$\forall x \in]-1,1[,L_{\alpha}(-x)+L_{\alpha}(x)=2^{1-\alpha}L_{\alpha}(x^{2})]$$

- 4) Pour tout $x \in]-1,1[$, établir une relation entre $L'_{\alpha+1}(x)$ et $L_{\alpha}(x)$. Exprimer $L_{\alpha+1}(x)$ sous forme d'une intégrale entre 0 et x faisant intervenir L_{α} .
- 5) Pour $x \in]-1,1[$, préciser les valeurs de $L_{\alpha}(x)$ lorsque $\alpha=0,\alpha=-1$ et $\alpha=1$.
- 6) Dans cette question, on suppose que $\alpha \leq 1$. Montrer que $L_{\alpha}(x)$ tend vers $+\infty$ quand x tend vers 1 par valeurs strictement inférieures. Pour cela, on pourra chercher à minorer $L_{\alpha}(x)$ pour $x \in]0,1[$.

Partie II : prolongement pour $\alpha > 1$

Dans toute cette partie, α est un réel strictement supérieur à 1. On va voir que le phénomène vu à la question (6) ne se produit plus et on va étudier ce prolongement en 1 et au-delà de -1 puis dans le champ complexe.

- 7) Montrer que la fonction L_{α} est continue sur [-1,1].
- 8) Déterminer $\lim_{\substack{x\to 1\\x<1}} L_2'(x)$ et préciser si la fonction L_2 est dérivable en 1.
- 9) Montrer que l'application $\varphi: u \mapsto \frac{u^{\alpha-1}}{\mathrm{e}^u-1}$ est intégrable sur $]0,+\infty[$.
- 10) Pour tout réel $x \le 1$, justifier l'existence de $K_{\alpha}(x) = \int_{0}^{+\infty} \frac{u^{\alpha-1}}{e^{u} x} du$.
- 11) Montrer que l'application K_{α} ainsi définie est continue sur l'intervalle $]-\infty,1]$.
- 12) Dans cette question, on suppose que $\alpha > 2$. Montrer que la fonction K_{α} est de classe C^1 sur l'intervalle $]-\infty,1$].
- 13) On revient, pour toute la suite de cette partie, au cas général où $\alpha > 1$. Montrer que la fonction K_{α} est de classe C^1 sur l'intervalle ouvert $]-\infty,1[$.
- 14) Prouver l'existence de $\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha-1} e^{-t} dt$ et justifier que $\Gamma(\alpha) > 0$.
- 15) Montrer que pour tout $x \in [-1, 1]$, on a la relation :

$$xK_{\alpha}(x) = \Gamma(\alpha).L_{\alpha}(x).$$

On précisera avec soin le théorème d'intégration terme à terme utilisé.

16) Pour tout $x \in]-\infty,1]$, on prolonge la définition de $L_{\alpha}(x)$ en posant :

$$L_{\alpha}(x) = \frac{x}{\Gamma(\alpha)} \int_{0}^{+\infty} \frac{u^{\alpha-1}}{e^{u} - x} du.$$

Montrer que l'application L_{α} ainsi définie est continue sur] - ∞ , 1] et de classe C^1 sur] - ∞ , 1 [.

17) Montrer que pour tout réel $x \le 1$, on a :

$$L_{\alpha}(x) = \frac{x}{\Gamma(\alpha)} \int_0^1 \frac{(-\ln(t))^{\alpha-1}}{1 - xt} dt.$$

18) Justifier que l'on peut prolonger la fonction L_{α} sur $\mathbb{C} \setminus]1, +\infty[$ par la définition :

$$\forall z \in \mathbb{C} \setminus]1, +\infty[, \quad L_{\alpha}(z) = \frac{z}{\Gamma(\alpha)} \int_{0}^{+\infty} \frac{u^{\alpha-1}}{\mathrm{e}^{u} - z} \, \mathrm{d}u.$$

Montrer alors que pour tout $z \in \mathbb{C}$, tel que $z^2 \notin]1, +\infty[$, on a encore la relation :

$$L_{\alpha}(z) + L_{\alpha}(-z) = 2^{1-\alpha}L_{\alpha}(z^{2}).$$

III Etude particulière du dilogarithme ($\alpha = 2$)

On s'intéresse ici, pour tout $x \in [-1,1]$, à : $L_2(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}$.

Valeurs remarquables et équations fonctionnelles

19) Soit $f: \mathbb{R} \to \mathbb{R}, 2\pi$ -périodique et impaire, telle que :

$$\forall x \in]0,\pi], f(x) = \frac{\pi - x}{2}.$$

Calculer les coefficients de Fourier $a_0(f) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)dt$, et pour $n \in \mathbb{N}^*$,

$$a_n(f) := \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt$$
, et $b_n(f) := \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt$.

20) La théorie des séries de Fourier permet de démontrer la formule de Parseval suivante (qui est une sorte de généralisation du théorème de Pythagore) :

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f^2 = a_0^2 + \frac{1}{2} \sum_{n=1}^{+\infty} (|a_n|^2 + |b_n|^2).$$

En admettant ce résultat ici, en déduire le calcul de $L_2(1)$ et puis le calcul de $L_2(-1)$ et $K_2(1)$.

21) Soit Φ définie par :

$$\forall x \in]0,1[, \Phi(x) = L_2(x) + L_2(1-x) + \ln(x)\ln(1-x).$$

Montrer que Φ est de classe C^1 sur]0,1[puis qu'elle est constante sur]0,1[et vaut $L_2(1)$.

- 22) En déduire la valeur de $L_2\left(\frac{1}{2}\right)$
- 23) Prouver aussi que:

$$\forall x \in \left[-1, \frac{1}{2}\right], L_2(x) + L_2\left(\frac{x}{x-1}\right) = -\frac{1}{2}(\ln(1-x))^2$$

Ecritures intégrales simples de L_2 et application à un équivalent en $-\infty$:

24) Désormais, on s'intéresse au prolongement de L_2 considéré au II vérifiant en particulier la relation vue à la question 17, dont on partira pour traiter les questions suivantes, c'est-à-dire :

$$\forall x < 0, \quad L_2(x) = -\frac{x}{\Gamma(2)} \int_0^1 \frac{\ln(s)}{1 - xs} \, ds$$

Montrer alors que pour tout x < 0, on a aussi les égalités

$$L_2(x) = -\int_x^0 \frac{\ln\left(\frac{t}{x}\right)}{1-t} dt = \int_x^0 \frac{\ln(1-t)}{t} dt.$$

2

- 25) Pour tout x < 0, calculer $g(x) = \int_x^0 \frac{\ln(1-t)}{t-1} dt$ et en déduire $\lim_{x \to -\infty} g(x)$.
- 26) Montrer que $h(x) := \int_x^0 \frac{\ln(1-t)}{t(t-1)} dt$ admet une limite finie quand $x \to -\infty$.
- 27) Déterminer $\lim_{x\to-\infty} (L_2(x) g(x)).$

En déduire enfin un équivalent simple de $L_2(x)$ quand x tend vers $-\infty$.