D.M. 11 : Approximation uniforme en var complexe et polynômes orthogonaux

Partie I: Approximation uniforme en variable complexe

1) La fonction f est continue sur D_f puisque les f_n le sont et que f est une limite uniforme sur D_f de fonctions continues sur D_f . Comme D_f est compact, f et les f_n sont bornées. Ainsi dire que (f_n) CVU vers f signifie que la suite (f_n) converge vers f dans $(\mathcal{C}(D_f, \mathbb{C}), || ||_{\infty})$ Mais alors par continuité de la norme infinie (pour la topologie qu'elle définit elle-même), on a $||f_n||_{\infty} \xrightarrow[n \to +\infty]{} ||f||$.

(En fait c'est l'I.T. $|||f_n||_{\infty} - ||f||_{\infty}| \le ||f_n - f||_{\infty}$).

Mais alors la suite réelle $(\|f_n\|_{\infty})_{n\in\mathbb{N}}$ étant convergente, elle est en particulier bornée, donc :

$$\exists M \in \mathbb{R}^+, \ \forall \ n \in \mathbb{N}, \ ||f_n||_{\infty} \leq M$$

2) a) Par déf. si on pose $u_k(t) = a_{n,k} r^k e^{i(k-p)t}$ alors

$$\int_0^{2\pi} e^{-ipt} f_n(re^{it}) dt = \int_0^{2\pi} \left(\sum_{k=0}^{+\infty} u_k(t) \right) dt,.$$

Comme $|u_k(t)| = |a_{n,k}| r^k$ est le terme général d'une série convergente indépendante de t, on sait donc $\sum u_k$ converge normalement par rapport à $t \in [0, 2\pi]$, ce qui permet d'intégrer terme à terme sur le segment $[0, 2\pi]$:

$$\int_0^{2\pi} e^{-ipt} f_n(re^{it}) dt = \sum_{k=0}^{+\infty} \left(a_{n,k} r^k \int_0^{2\pi} e^{i(k-p)t} dt \right) = \sum_{k=0}^{+\infty} a_{n,k} r^k 2\pi \, \delta_{k,p} = 2\pi a_{n,p} r^p.$$

b) Selon a),
$$2\pi |a_{n,p}| r^p = \left| \int_0^{2\pi} e^{-ipt} f_n(re^{it}) dt \right| \le \int_0^{2\pi} \left| f_n(re^{it}) \right| dt \le 2\pi M.$$

Cette inégalité est valable pour tout $r \in]0,1[$; en passant à la limite pour r tendant vers 1, on obtient

$$|a_{n,p}| \le M$$

c) Fixons $p \in \mathbb{N}$ et $r \in]0,1[$. Selon a), $a_{n,p} = \frac{1}{2\pi r^p} \int_0^{2\pi} \varphi_n(t) dt$, où $\varphi_n(t) = e^{-ipt} f_n(re^{it})$.

Comme (f_n) converge uniformément vers f sur D_f , (φ_n) converge uniformément sur $[0, 2\pi]$ vers la fonction $\varphi: t \mapsto e^{-ipt} f(re^{it})$.

En effet, pour tout $t \in [0, 2\pi]$, $|\varphi_n(t) - \varphi(t)| = |f_n(re^{it}) - f(re^{it})| \le ||f_n - f||_{\infty}$, qui tend vers 0 et ne dépend pas de t.

Par intégration, sur un segment, d'une limite uniforme, on en déduit que

$$a_{n,p} \xrightarrow[n \to +\infty]{} \ell_p = \frac{1}{2\pi r^p} \int_0^{2\pi} \varphi(t) dt = \frac{1}{2\pi r^p} \int_0^{2\pi} e^{-ipt} f(re^{it}) dt.$$

Alternative : invoquer seulement la CVS et le T.C.D. avec la domination par la fonction constante égale à M.

Moralité : on a montré que la CVU de (f_n) vers f donnait la CV des suites de ses coeff. de Fourier complexe vers ceux de f.

3) D'une part, selon 2.b), $|u_p(n)| \leq M|z|^p$, qui est le terme général d'une série convergente indépendante de n, donc $\sum u_p$ converge normalement sur \mathbb{N} .

D' autre part, selon 2.c), pour p fixé, $u_p(n)$ tend vers $\ell_p z^p$ quand n tend vers $+\infty$.

On peut donc appliquer le théorème de sommation des limites qui dit que $\sum \ell_p z^p$ converge et

$$\sum_{p=0}^{+\infty} u_p(n) \underset{n \to +\infty}{\longrightarrow} \sum_{p=0}^{+\infty} \ell_p z^p.$$

Mais par définition, $\sum_{p=0}^{+\infty} u_p(n) = f_n(z)$, qui tend vers f(z) quand n tend vers $+\infty$. On en conclut que $f(z) = \sum_{p=0}^{+\infty} \ell_p z^p$, ce qui montre bien que $f \in \mathbb{A}$ (on sait déjà que f est continue sur D_f).

4) Les polynômes sont évidemment dans A et donc par le c), une suite de polynômes qui CVU dans \mathbb{A} aura sa limite dans \mathbb{A} .

Donc si on prend une fonction continue sur D_f qui n'est pas dans \mathbb{A} , elle ne sera donc pas limite uniforme de polynômes sur D_f .

Par exemple : $f: z \mapsto |z|$ dont la restriction à \mathbb{R} n'est pas dérivable en 0.

5) a) Pour $z \in D_f$, $rz \in D_{f,r} \subset D$, donc $f_{r,n}(z)$ et $f_r(z)$ sont bien définis.

La fonction $f_{r,n}$ est continue sur D_f par composition car g_n est continue sur $D_{f,r} \subset D$.

En notant pour $z \in D$, $g_n(z) = \sum_{p=0}^{+\infty} a_{n,p} z^p$, il vient $f_{r,n}(z) = \sum_{p=0}^{+\infty} a_{n,p} r^p z^p$, donc $f_{r,n}$ est développable en série entière sur D, et finalement $f_{r,n} \in \mathbb{A}$.

La variable rz décrit $D_{f,r}$ quand z décrit D_f donc $||f_{r,n} - f_r||_{\infty} = ||(g_n - g)_{|D_{f,r}}||_{\infty}$, qui tend vers 0 par hypothèse.

On conclut bien que $(f_{r,n})$ converge donc bien uniformément vers f_r sur D_f .

b) Grâce au a), on peut appliquer le résultat du 3) qui nous dit ici que f_r appartient à \mathbb{A} .

On peut donc écrire, pour $z \in D$, $f_r(z) = \sum_{n=0}^{\infty} a_{r,n} z^n$.

En notant D_r le disque ouvert de $\mathbb C$ de centre 0 et de rayon r, cela se réécrit :

$$\forall z \in D_r, g(z) = \sum_{n=0}^{+\infty} r^{-n} a_{r,n} z^n.$$

Considérons maintenant r et s dans]0,1[tels que $r \le s$.

Pour $z \in D_r$, $g(z) = \sum_{n=0}^{+\infty} r^{-n} a_{r,n} z^n = \sum_{n=0}^{+\infty} s^{-n} a_{s,n} z^n$. Par unicité du développement en série entière, $r^{-n}a_{r,n} = s^{-n}a_{s,n}$ pour tout $n \in \mathbb{N}$.

Autrement dit, $r^{-n}a_{r,n}$ ne dépend en fait pas de r et on peut le noter simplement a_n .

On obtient alors : $\forall r \in]0,1[, \forall z \in D_r, g(z) = \sum_{n=0}^{+\infty} a_n z^n$, ce qui signifie simplement :

$$\forall z \in D, g(z) = \sum_{n=0}^{+\infty} a_n z^n.$$

On a bien montré que g est développable en série entière sur D.

Partie II : densité pour les polynômes de Laguerre

- 1. a) Soient $(f,g) \in H^2$ et $(\alpha,\beta) \in \mathbb{R}^2$. Par définition, les fonctions $f_1 : t \mapsto f(t) e^{-t/2}$ et $g_1 : t \mapsto g(t) e^{-t/2}$ appartiennent à $\mathscr{L}^2(\mathbb{R}_+,\mathbb{R}) \cap \mathcal{C}(\mathbb{R}^+,\mathbb{R})$. **N.B.** Le fait que $\mathscr{L}^2(\mathbb{R}_+,\mathbb{R}) \cap \mathcal{C}(\mathbb{R}^+,\mathbb{R})$ n'est PAS clairement écrit dans le programme donc;

reprendre la démonstration du cours : inégalité
$$|f_1(t)g_1(t)| \le \frac{f_1(t)^2}{2} + \frac{g_1(t)^2}{2}$$
.

Par conséquent, $\alpha f_1 + \beta g_1 \in \mathcal{L}^2(\mathbb{R}_+, \mathbb{R})$, ce qui signifie que $\alpha f + \beta g \in H$. Ainsi H est donc bien un sous-e.v. de $\mathcal{C}(\mathbb{R}_+,\mathbb{R})$.

b) Toujours d'après le cours, la fonction $f_1g_1:t\mapsto f(t)g(t)\,e^{-t}$ appartient à $\mathscr{L}^1(\mathbb{R}_+,\mathbb{R})$ donc $(f \mid g)$ est bien défini.

Il est alors clair que l'application (· | ·) est bilinéaire, symétrique et définie positive (stricte positivité de l'intégrale pour les fonctions continues). C'est donc un produit scalaire sur H.

- 2. À l'aide de la formule de Leibniz, on obtient facilement $L_n(t) = (-1)^n \sum_{k=0}^n \frac{(-1)^k}{k!} \binom{n}{k} t^k$. En particulier, L_n est bien un polynôme de degré n.
- 3. a) On raisonne par récurrence finie sur k.
- k = 0: l'égalité demandée est la définition de $(L_m \mid L_n)$.
- $k \to k+1$: $\pi_n^{(n-k-1)}$ est de la forme $t \mapsto t^{k+1}Q_n(t)e^{-t}$, où Q_n est un polynôme, donc $L_m^{(k)}\pi_n^{(n-k-1)}$ s'annule en 0 et tend vers 0 en $+\infty$. L'égalité au rang k+1 s'obtient alors par intégration par parties « à crochet nul ».
 - b) Appliquons le a) avec m < n et k = n. Comme $L_m^{(n)} = 0$ selon 2, on obtient $(L_m \mid L_n) = 0$. Prenons maintenant m = n = k. Il vient $||L_n||^2 = \frac{1}{n!} \int_0^{+\infty} L_n^{(n)}(t) \, \pi_n(t) \, dt$.

Mais selon 2., L_n est de degré n et de coefficient dominant $\frac{1}{n!}$, donc $L_n^{(n)} = 1$ et $||L_n||^2 =$ $\frac{1}{n!} \int_0^{+\infty} t^n e^{-t} dt = 1.$

Ainsi, $(L_n)_{n\in\mathbb{N}}$ est une famille orthonormale de $\mathbb{R}[X]$, et c'en est aussi une base puisque pour

- 4. a) De façon évidente, $e_{\alpha} \in H \Leftrightarrow \alpha > -1/2$.
- b) $(L_n \mid e_\alpha) = \frac{(-1)^n}{n!} \int_0^{+\infty} e^{-\alpha t} \pi_n^{(n)}(t) dt$. n intégrations par parties "à crochet null' donnent :

$$(L_n \mid e_{\alpha}) = \frac{(-1)^n \alpha^n}{n!} \int_0^{+\infty} e^{-\alpha t} \pi_n(t) dt$$
$$= \frac{(-1)^n \alpha^n}{n!} \int_0^{+\infty} t^n e^{-(1+\alpha)t} dt = \frac{(-1)^n \alpha^n}{n! (1+\alpha)^{n+1}} \int_0^{+\infty} u^n e^{-u} du = \frac{(-1)^n \alpha^n}{(1+\alpha)^{n+1}}.$$

$$\alpha > -\frac{1}{2}$$
, donc $-1 \le \frac{\alpha}{1+\alpha} \le 1$ et $0 \le \frac{\alpha^2}{(1+\alpha)^2} \le 1$, d'où $\sum_{n=0}^{+\infty} (L_n \mid e_\alpha)^2 = \frac{1}{(1+\alpha)^2} \cdot \frac{1}{1-\frac{\alpha^2}{(1+\alpha)^2}} = \frac{1}{1+2\alpha}$

c) Remarquons d'abord que $\frac{1}{1+2\alpha} = \|e_{\alpha}\|^2$. Pour $n \in \mathbb{N}$ notons p_n le projecteur orthogonal de H sur $\mathbb{R}_n[X]$.

Comme $(L_k)_{0 \le k \le n}$ est une base orthonormale de $\mathbb{R}_n[X]$, $p_n(e_\alpha) = \sum_{k=0}^n (L_k \mid e_\alpha) L_k$ et $||p_n(e_\alpha)||^2 = \sum_{k=0}^n (L_k \mid e_\alpha) L_k$

 $\sum_{k=0}^{\infty} (L_k \mid e_{\alpha})^2.$

D'autre part, d'après le théorème de Pythagore, $\|e_{\alpha}\|^2 = \|p_n(e_{\alpha})\|^2 + \|e_{\alpha} - p_n(e_{\alpha})\|^2$. Finalement, $\|e_{\alpha} - p_n(e_{\alpha})\|^2 = \frac{1}{1+2\alpha} - \sum_{k=0}^{n} (L_k \mid e_{\alpha})^2$, qui tend vers 0 quand n tend vers l'infini

La suite $(p_n(e_\alpha))$ converge donc vers e_α . Comme $p_n(e_\alpha) \in \mathbb{R}_n[X] \subset \mathbb{R}[X]$, cela prouve que $e_{\alpha} \in \mathbb{R}[X].$

5. a) Soient $f \in H$ et $\varepsilon \in \mathbb{R}_+^*$. Fixons $A \in \mathbb{R}_+$ tel que $\int_{-\infty}^{+\infty} f(t)^2 e^{-t} dt \le \varepsilon^2$ puis définissons gsur \mathbb{R}_+ par :

 $g(t) = f(t) \operatorname{sur} [0, A], \ g(t) = (A + 1 - t) f(t) \operatorname{sur} [A, A + 1], \ g(t) = 0 \operatorname{sur} [A + 1, +\infty[$

Par construction, g appartient à K; de plus :

 $||f - g||^2 = \int_A^{A+1} (t - A)^2 f(t)^2 e^{-t} dt + \int_{A+1}^{+\infty} f(t)^2 e^{-t} dt \le \int_A^{+\infty} f(t)^2 e^{-t} dt \le \varepsilon^2, \text{ donc } ||f - g|| \le \varepsilon.$ Cela prouve que $f \in \overline{K}$ et donc que K est dense dans H.

b) Comme $f \in K$, il existe $\eta \in [0,1]$ tel que F est nulle sur $[0,\eta]$. F peut donc se prolonger en une fonction continue sur [0,1] (que l'on note encore F). Par le théorème de Weierstrass, il existe $P \in \mathbb{R}[X]$ tel que : $\forall x \in [0,1], |F(x) - P(x)| \le \varepsilon$.

Posons alors, pour
$$t \in \mathbb{R}_+$$
, $g(t) = P(e^{-t})$.
Par construction, $g \in V$ et pour tout $t \in \mathbb{R}_+$, $|f(t) - g(t)| = |F(e^{-t}) - P(e^{-t})| \le \varepsilon$.
Enfin, $||f - g||^2 = \int_0^{+\infty} (f(t) - g(t))^2 e^{-t} dt \le \varepsilon^2 \int_0^{+\infty} e^{-t} dt = \varepsilon^2$, donc $||f - g|| \le \varepsilon$.

c) On sait que $\operatorname{Vect}((L_n)_{n\in\mathbb{N}}) = \mathbb{R}[X]$, donc il s'agit de démontrer que $\mathbb{R}[X]$ est dense dans H.

Soit $(f, \varepsilon) \in H \times \mathbb{R}_+^*$. Selon a) et b), on peut trouver $g \in K$ puis $h \in V$ telles que $||f - g|| \le \varepsilon$ et $||g - h|| \le \varepsilon$.

On peut écrire $h = \sum_{k=0}^{n} \lambda_k e_k$ pour un entier n et des réels λ_k convenables.

Selon 4.c), chaque e_k appartient à $\overline{\mathbb{R}[X]}$ et il est facile de montrer par le critère séquentiel que l'adhérence d'un sous-e.v. est aussi un sous-e.v.; par conséquent, $h \in \mathbb{R}[X]$ et il existe donc $P \in \mathbb{R}[X]$ tel que $||h - P|| \le \varepsilon$.

L'inégalité triangulaire donne $||f - P|| \le 3\varepsilon$, donc $f \in \overline{\mathbb{R}[X]}$ et $\mathbb{R}[X]$ est bien dense dans H.