Banque CCINP: Ex. 2, 20, 21, 22, 23, 24.

Rayon de convergence

Exercice 1. Déterminer le rayon de convergence des séries entières suivantes :

a)
$$\sum_{n\geq 0} \frac{n^2}{3^n+n} z^n$$

b) $\sum_{n\geq 1} \frac{\operatorname{ch} n}{n} z^n$

f) $\sum_{n\geq 1} \frac{(2n)!}{n!n^n} z^n$

b)
$$\sum_{n\geq 1} \frac{\operatorname{ch} n}{n} z^n$$

c) $\sum_{n \ge 1} (\sqrt[n]{n+1} - \sqrt[n]{n}) z^n$

d) $\sum_{n\geq 1} \operatorname{Arccos}\left(1-\frac{1}{n^2}\right) z^n$

e)
$$\sum_{n\geq 0} \left(\frac{1}{1+\sqrt{n}}\right)^n z^n$$

g) $\sum_{n\geqslant 1} d(n)z^n$ où d(n) est le nombre de diviseurs $\geqslant 1$ de n

h) $\sum_{n\geqslant 1} a_n z^n$, où a_n est la $n^{\text{ème}}$ décimale de

Exercice 2 (Lacunes 1). Soit $\sum a_n z^n$ une série entière de rayon de CV R_a . Pour tout $n \in \mathbb{N}$ on note $b_{2n} = a_n$ et $b_{2n+1} = 0$. Rayon de CV de $\sum b_n z^n$?

Exercice 3 (Lacunes 2). Quel est le rayon de convergence de $\sum_{n=0}^{\infty} z^{n^2}$?

Exercice 4 (Les pôles limitent l'intervalle de validité du D.S.E.). On admet ici que si f est D.S.E. sur un voisinage de 0 et si $f(0) \neq 0$ alors 1/f est aussi D.S.E. sur un voisinage de 0.

a) Par le résultat admis on a un R > 0 tel que $\forall x \in]-R, R[, \frac{1}{\cos(x)} = \sum_{n=0}^{+\infty} a_n x^n]$.

Donner un majorant de R.

b) De même on a un R' > 0 tel que $\forall x \in]-R', R'[, \frac{1}{\operatorname{ch}(x)} = \sum_{n=0}^{+\infty} b_n x^n]$.

Montrer qu'on a la même majoration pour R'.

Exercice 5 (Séries entières disjointes). On dit que deux série entières $\sum a_n z^n$ et $\sum b_n z^n$ ont des ensembles d'indices disjoints ssi pour tout $n \in \mathbb{N}$, $a_n = 0$ ou $b_n = 0$. On note R_a (resp. R_b) le rayon de CV de la première (resp. de la seconde).

Montrer que la série $\sum_{n=0}^{\infty} (a_n + b_n) z^n$ a pour rayon de CV min (R_a, R_b) .

Exercice 6. Trouver le rayon de convergence de la série entière $\sum a_n x^n$ sachant que : $\left|\frac{a_{3n+1}}{a_{3n}}\right| \underset{n\to+\infty}{\longrightarrow}$ $l_1, \left| \frac{a_{3n+2}}{a_{3n+1}} \right| \xrightarrow[n \to +\infty]{} l_2, \left| \frac{a_{3n+3}}{a_{3n+2}} \right| \xrightarrow[n \to +\infty]{} l_3$ où l_1, l_2, l_3 sont trois nombres réels tous non nuls.

Exercice 7 (CCINP MP 2021). On définit pour tout entier $n \in \mathbb{N}$

$$a_n = \sin\left(\pi(2+\sqrt{3})^n\right)$$
 , $b_n = \sin\left(\pi(2-\sqrt{3})^n\right)$

- a) Montrer que $\sum b_n$ converge.
- b) Montrer que, pour tout $n \in \mathbb{N}$, la somme $(2+\sqrt{3})^n + (2-\sqrt{3})^n$ est un entier naturel pair.
- c) Déterminer le rayon de convergence des séries entières suivantes :

$$\sum b_n x^n, \sum a_n b_n x^n, \sum (a_n + b_n) x^n$$

Commentaire: Voici un dicton utile: « Whenever one sees $a+b\sqrt{d}$, its partner $a-b\sqrt{d}$ is lurking in the background. » Un exercice beaucoup plus méchant aurait été de donner à étudier $\sum a_n x^n$ toute seule!

Calcul de sommes de séries entières

Exercice 8. a) Déterminer le rayon de convergence R de la série entière $\sum a_n x^n$ où $a_n = \frac{(-1)^n}{n(n-1)}$ pour $n \ge 2$. b) Pour tout $x \in]-R, R[$, calculer la somme $S(x) = \sum_{n=0}^{\infty} a_n x^n$.

Exercice 9. Soient $(a, x) \in \mathbb{R}^2$. Etudier la convergence et calculer la somme $f_a(x) = \sum_{n=0}^{+\infty} \cos(na)x^n/n!$.

a) Soit $f(x) = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$. Préciser l'ensemble de déf. de fExercice 10 (A l'aide d'une E.D.). et trouver une E.D. vérifiée par f.

- b) Trouver l'ensemble des solutions complexes à cette E.D. en utilisant le théorème de décomposition des noyaux.
- c) En déduire une forme explicite simple pour f et pour $\sum_{i=1}^{\infty} \frac{1}{(3n)!}$

Exercice 11. Calculer la somme $\sum_{n=0}^{+\infty} W_n x^n$ où $W_n = \int_0^{\pi/2} \cos^n(t) dt$, après avoir justifié que le rayon de convergence de cette série était non nul.

Développement de fonctions en séries entières

Exercice 12. a) Montrer que $f: x \mapsto \frac{1}{\sqrt{1-x^2}}$ est D.S.E. sur l'intervalle] – 1,1[et expliciter ce développement.

- b) En déduire que la fonction arcsin est D.S.E. sur l'intervalle]-1,1[et expliciter son développement.
- c) En déduire la formule :

$$\frac{\pi}{2} = \sum_{n=0}^{+\infty} \frac{(2n)!}{2^{2n}(n!)^2 (2n+1)}.$$

Exercice 13 (Fonctions trigo. linéarisation...). a) D.S.E. de $f(x) = \left(\frac{\sin(x)}{x}\right)^2$.

b) D.S.E. de
$$f(x) = \frac{\sin(4x)}{\sin(x)}$$
.

Exercice 14 (CCINP 2021 : D.S.E. avec une E.D.). On considère la fonction f définie par f(x) =

- a) Justifier qu'elle est développable en série entière sur] 1, 1[.
- b) Vérifier que f' est solution de l'équation différentielle $(1-x^2)y'-xy=2$.
- c) En déduire son développement en série entière.

Exercice 15 (Cas où il faut d'abord dériver avant d'avoir une fraction rationnelle). Soit $\theta \in \mathbb{R}$. On pose $f(x) = \ln(x^2 - 2x\cos(\theta) + 1)$. Développer f en série entière autour de 0.

Fonctions sommes de séries entières, étude au bord

- Exercice 16. Soit $(a_n) \in \mathbb{R}^{\mathbb{N}}$ telle que $a_{n+1} a_n$ tende vers 0 en décroissant. a) Montrer que le rayon de convergence de $\sum (-1)^n a_n x^n$ est au moins égal à 1. On pose $f(x) = \frac{1}{2} \sum_{n=0}^{\infty} a_n x^n$ $\sum_{n=0}^{+\infty} (-1)^n a_n x^n \text{ pour } |x| < 1.$
- b) En étudiant (x+1)f(x) montrer que f(x) a une limite finie l quand $x \to 1$. On exprimera lsous forme d'une série.
 - c) Exemple : $a_0 = 0$ et $a_n = \ln(n)$. Déterminer l.

Exercice 17 (Cas des coefficients positifs $a_n \sim b_n$ donne pour R = 1, $f(x) \sim g(x)$). Soit f(x) = 1

 $\sum_{n=0}^{+\infty} a_n x^n \text{ et } g(x) = \sum_{n=0}^{+\infty} b_n x^n \text{ avec } b_n \ge 0 \text{ pour tout } n \in \mathbb{N} \text{ et } \sum b_n \text{ divergente, le rayon de convergence}$ $\det^{n=0} \sum b_n x^n \text{ étant } R = 1.$

- a) Montrer que $g(x) \xrightarrow[x \to 1]{} +\infty$.
- b) Montrer que si $a_n = o(b_n)$ alors f(x) = o(g(x)) pour $x \to 1$. c) Montrer que si $a_n \underset{n \to +\infty}{\sim} b_n$ alors $f(x) \underset{x \to 1}{\sim} g(x)$.

Exercice 18 (Mines Ponts 2021 ex. 2 sans prép (étude au bord pour une série génératrice exp.)). Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle telle que $a_n \underset{n\to\infty}{\longrightarrow} L \in \mathbb{R}$. On pose $S(x) = \sum_{n=0}^{+\infty} \frac{a_n x^n}{n!}$ pour les x tels que la série converge. Montrer que $S(x)e^{-x} \underset{x\to +\infty}{\longrightarrow} L$.

Variable complexe

Exercice 19 (Formule et Inégalité de Cauchy). Soit $\sum a_n z^n$ une série entière de rayon de CV R et $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ sa somme définie au moins sur D(0,R).

- a) Montrer que pour tout $r \in]0, R[, a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f(re^{i\theta})e^{-in\theta}d\theta.$
- b) Pour tout $r \in]0, R[$, on note $M(r) = \sup_{|z|=r} |f(z)|$. Montrer que $|a_n| \le \frac{M(r)}{r^n}$. c) En déduire que si $R = +\infty$, (on dit que f est alors une fonction entière) et si f est bornée, alors f est constante (théorème de Liouville).

Abel radial et transformation d'Abel

Exercice 20 (Application au produit de Cauchy de deux séries numériques cf D.M.1). a) Soit $(\sum a_n)$ et $(\sum b_n)$ deux séries numériques convergentes.

Pour tout $n \in \mathbb{N}$, on note $c_n = \sum_{k=0}^{n} a_k b_{n-k}$.

Montrer en considérant $a_n = b_n = {-1/2 \choose n}$, que $\sum a_n$ et $\sum b_n$ converge mais que la série $\sum c_n$ n'est pas convergente.

b) on suppose que $\sum c_n$ est convergente et que $\sum a_n$ et $\sum b_n$ convergent mais pas forcément

Montrer qu'alors on a nécessairement $\sum_{n=0}^{+\infty} c_n = (\sum_{n=0}^{+\infty} a_n)(\sum_{n=0}^{+\infty} b_n)$ Indication : on utilisera le théorème de convergence radiale d'Abel

Exercice 21 (Transformation d'Abel et démonstration de CVU radiale, et donc du théorème radial d'Abel).

1) Théorème de convergence uniforme radiale : On considère $(a_n) \in \mathbb{C}^{\mathbb{N}}$ telle que $\sum a_n z^n$ soit de rayon de convergence R > 0.

On suppose que la série numérique $\sum a_n R^n$ converge (pas forcément absolument!). On pose pour tout $n \in \mathbb{N}$, $u_n : [0,R] \to \mathbb{C}$, $x \mapsto a_n x^n$. On sait que $\sum u_n$ CVS sur [0,R]. On va démontrer que $\sum u_n$ CVU sur [0,R].

Question : Justifier qu'il suffit de démontrer ce théorème dans le cas où R = 1.

2) **Démonstration dans le cas** R=1 On se place donc dans les hypothèse du 1) avec R=1.

Pour tout $n \in \mathbb{N}$ et tout $x \in [0,1]$ on pose $\rho_n(x) = \sum_{k=n+1}^{+\infty} a_k x^k$ et $r_n = \rho_n(1) = \sum_{k=n+1}^{+\infty} a_k$. a) La transformation d'Abel (I.P.P. discrète) : justifier que pour tout $x \in [0,1]$ et tout $n \in \mathbb{N}$:

$$\sum_{k=n+1}^{+\infty} a_k x^k = r_n x^{n+1} + \sum_{k=n+1}^{+\infty} r_k (x^{k+1} - x^k).$$

Indication - Pour vraiment comprendre le processus d'I.P.P. discrète et prouver cette égalité de gauche à droite, penser à écrire $a_k = r_{k-1} - r_k$.

b) En déduire que si on note $\varepsilon_n := \sup_{k > n} |r_k|$, on a :

$$\forall x \in [0,1], \mid \sum_{k=n+1} a_k x^k \mid \le 2\varepsilon_n$$

- c) Conclure pour la convergence uniforme annoncée.
- 3) Déduire du théorème du 1) le théorème de continuité du cours.