D.M. 8 : autour de l'intégration terme à terme, solution

Partie I

- 1. (i) Posons ici, pour $t \in \mathbb{R}_+^*$, $f(t) = t^{\alpha} e^{-\beta^2 t^2}$. On vérifie trois propriétés :
- f est continue sur \mathbb{R}_{+}^{*}
- $f(t) \underset{t\to 0}{\sim} \frac{1}{t^{-\alpha}}$, avec $-\alpha > 1$,, fonction intégrable en 0 de signe constant,
- $f(t) = \underset{t \to +\infty}{o} \left(\frac{1}{t^2}\right)$ par croissance comparée.

Ces trois propriétés donnent que $f\in \mathcal{L}^1(]0,+\infty[,\mathbb{R})$ en particulier l'intégrale existe.

(ii) Le changement de variable $u = \beta^2 t^2$ donne, comme t > 0, $t = \frac{\sqrt{u}}{\beta}$ et donc $dt = \frac{du}{2\beta\sqrt{u}}$ et :

$$\int_0^{+\infty} t^{\alpha} e^{-\beta^2 t^2} dt = \frac{1}{2\beta^{\alpha+1}} \int_0^{+\infty} u^{(\alpha-1)/2} e^{-u} du = \frac{1}{2\beta^{\alpha+1}} \Gamma\left(\frac{\alpha+1}{2}\right).$$

2. a) Pour $k \ge a$, la décroissance de f sur [k, k+1] donne que :

$$f(k) \ge \int_{k}^{k+1} f \ge f(k+1)$$

et donc:

$$0 \le f(k) - \int_{k}^{k+1} f \le f(k) - f(k+1)$$

Autrement dit, pour $k \ge a$:

$$0 \le d_k(f) \le f(k) - f(k+1) \tag{1}$$

Comme f est décroissante, minorée par 0, on sait que f admet une limite finie en $+\infty$ (théorème de la limite monotone). Par lien suite/série, on en déduit que la série télescopique $\sum (f(k)-f(k+1))$ converge.

Alors avec l'encadrement (1), on a majoré $d_k(f)$, A.P.C.R., par un terme général de série convergente, donc $\sum d_k(f)$ converge par comparaison de séries à termes positifs.

- b) Par le même raisonnement qu'au a), avec la monotonie de f
- pour $k < |a|, f(k) f(k+1) \le d_k(f) \le 0$
- pour $k > \lfloor a \rfloor$, $0 \le d_k(f) \le f(k) f(k+1)$.
- pour $k = \lfloor a \rfloor$, $d_k(f) = f(\lfloor a \rfloor) \int_{\lfloor a \rfloor}^{\lfloor a+1 \rfloor} f$

Par sommation des encadrements précédents, il vient :

$$\sum_{k < \lfloor a \rfloor} (f(k) - f(k+1)) + f(\lfloor a \rfloor) - \int_{\lfloor a \rfloor}^{\lfloor a+1 \rfloor} f \le D(f) \le f(\lfloor a \rfloor) - \int_{\lfloor a \rfloor}^{\lfloor a+1 \rfloor} f + \sum_{k > \lfloor a \rfloor} (f(k) - f(k+1))$$

Par télescopage, on en déduit, en notant $\ell = \lim_{+\infty} f$:

$$f(0) - f(\lfloor a \rfloor) + f(\lfloor a \rfloor) - \int_{\lfloor a \rfloor}^{\lfloor a+1 \rfloor} f \le D(f) \le f(\lfloor a \rfloor) - \int_{\lfloor a \rfloor}^{\lfloor a+1 \rfloor} f + f(\lfloor a \rfloor + 1) - \ell$$

qui se simplifie en :

$$f(0) - \int_{\lfloor a \rfloor}^{\lfloor a+1 \rfloor} f \le D(f) \le f(\lfloor a \rfloor) - \int_{\lfloor a \rfloor}^{\lfloor a+1 \rfloor} f + f(\lfloor a \rfloor + 1) - \ell \tag{2}$$

Or comme f(a) réalise le maximum de f sur \mathbb{R}^+ , on sait que $\int_{\lfloor a\rfloor}^{\lfloor a+1\rfloor} f \leq f(a) \times 1 = f(a)$. Donc avec l'inégalité de gauche dans (2), on obtient :

$$f(0) - f(a) \le D(f)$$

et a fortiori, comme $f(0) \ge 0$, on a $-f(a) \le f(0) - f(a) \le D(f)$, a fortiori :

$$-2f(a) \le D(f) \tag{3}$$

D'autre part, comme $\int_{\lfloor a\rfloor}^{\lfloor a+1\rfloor} f \ge 0$, avec la deuxième inégalité dans (2), on déduit :

$$D(f) \le f(\lfloor a \rfloor) + f(\lfloor a \rfloor + 1) - \ell \le f(\lfloor a \rfloor) + f(\lfloor a \rfloor + 1) \le 2f(a)$$

$$\tag{4}$$

puisque $\ell \ge 0$ et que $f(a) = \max_{\mathbb{R}^+} f$.

• Partie II

1. a) Fixons $t \in \mathbb{R}_+^*$. Par croissance comparée, $t^2 u_k(t) \underset{t \to +\infty}{\sim} 2k^4 t^2 e^{-k^2 t^2} \underset{k \to +\infty}{\longrightarrow} 0$

Donc $u_k(t) = o(\frac{1}{k^2})$, d'où la convergence absolue de $\sum u_k(t)$ par comparaison.

b) Pour $t \in [a,b] \subset \mathbb{R}_+^*$, $|u_k(t)| \le (2k^2b^2+1)e^{-k^2a^2}$, qui est le terme général d'une série convergente (même argument qu'au a)) indépendant de t.

Ainsi, la série $\sum u_k$ converge normalement, donc uniformément, sur tout segment de \mathbb{R}_+^* .

Chaque fonction u_k étant continue sur \mathbb{R}_+^* d'après les théorème généraux, on en déduit par théorème de continuité d'une limite uniforme que S est continue sur \mathbb{R}_+^* .

- 2. a) Avec les trois propriétés :
- u_k est continue sur \mathbb{R}_+^* ,
- $-u_k(t) \xrightarrow[t\to 0]{} -1,$
- $-u_k(t) = o_{t\to+\infty}(\frac{1}{t^2})$ (idem 1) a) avec la variable t cette fois),

on conclut que u_k est intégrable sur \mathbb{R}_+^* .

Calcul version parachute : On remarque que u_k est la dérivée de $t \mapsto -t e^{-k^2 t^2}$, donc

$$\int_0^{+\infty} u_k = \left[-t \, e^{-k^2 t^2} \right]_0^{+\infty} = 0.$$

Calcul version un peu plus naturelle : on pose d'abord x = kt, alors

$$I := \int_0^{+\infty} u_k(t)dt = \frac{1}{k} \int_0^{+\infty} (2x^2 - 1)e^{-x^2} dx.$$

On peut séparer I en deux intégrales convergentes : $k.I = \int_0^{+\infty} 2x^2 e^{-x^2} dx - \int_0^{+\infty} e^{-x^2} dx$. Dans la première on fait une intégration par partie un peu intéressante pour éliminer le x.

$$\begin{cases} u(x) = x \Rightarrow u'(x) = 1, \\ v'(x) = 2xe^{-x^2} \Leftarrow v(x) = -e^{-x^2} \end{cases}$$

On obtient bien que I = 0

b) u_k est négative sur $]0, 1/k\sqrt{2}]$ et positive sur $[1/k\sqrt{2}, +\infty[$, donc, en utilisant a) :

$$\int_0^{+\infty} |u_k| = -\int_0^{1/k\sqrt{2}} u_k + \int_{1/k\sqrt{2}}^{+\infty} u_k = \left[t e^{-k^2 t^2}\right]_0^{1/k\sqrt{2}} + \left[-t e^{-k^2 t^2}\right]_{1/k\sqrt{2}}^{+\infty} = \frac{\sqrt{2/e}}{k}.$$

On constate donc que la série $\sum \int_0^{+\infty} |u_k|$ diverge.

• Partie III

1. a) Les fonctions g et h sont évidemment positives et continues, la fonction h est décroissante et on voit en considérant g' que g est croissante sur [0,1/x] et décroissante sur $[1/x,+\infty[$.

Les hypothèses du I.2. sont donc satisfaites avec a = 0 pour h et a = 1/x pour g.

b) g et h sont intégrables sur \mathbb{R}_+^* par continuité sur \mathbb{R}^+ et comme $o(1/t^2)$ quand $t \to +\infty$.

Le même calcul qu'au II.2.a) avec x à la place de k, ce qui ne change rien car le caractère entier de k n'intervient pas dans ce calcul, montre que

$$\int_0^{+\infty} (g - h) = 0.$$

Ainsi,
$$\int_0^{+\infty} g = \int_0^{+\infty} h$$
.

c) Par définition, $S(x) = \sum_{k=1}^{+\infty} g(k) - \sum_{k=1}^{+\infty} h(k)$ (il y a bien convergence séparée des deux séries). Compte tenu du b) et des égalités g(0) = 0 et h(0) = 1 on peut écrire : $S(x) = \sum_{k=0}^{+\infty} \left(g(k) - \int_{k}^{k+1} g(t) \, dt \right) - \sum_{k=0}^{+\infty} \left(h(k) - \int_{k}^{k+1} h(t) \, dt \right) + 1 = D(g) - D(h) + 1.$

$$S(x) = \sum_{k=0}^{+\infty} \left(g(k) - \int_{k}^{k+1} g(t) dt \right) - \sum_{k=0}^{+\infty} \left(h(k) - \int_{k}^{k+1} h(t) dt \right) + 1 = D(g) - D(h) + 1.$$

2. Soit x > 0, $|S(x)| = |D(g) - D(h) + 1| \le |D(g)| + |D(h)| + 1$ (*).

Comme q et h sont respectivement maximales en 1/x et en 0, avec q(1/x) = 2/e et h(0) = 1, et **I.**2.b) donne alors, $|D(g)| \le 2g(1/x) = 4/e$ et $|D(h)| \le 2h(0) = 2$, ce qui dans (*) donne :

$$|S(x)| \le 4/e + 3.$$

La fonction S est bien bornée.

3. a) Pour $x \ge 1$, et $k \ge 1$, $2k^2x^2 \ge 1$, donc $u_k(x) \ge 0$. Pour tout $u \in \mathbb{R}$, $e^u \ge 1 + u \ge u$, donc pour tout $x \in \mathbb{R}$, et en particulier pour tout $x \in [1, +\infty[: 4e^{k^2x^2/2} \ge 2k^2x^2 \ge 2k^2x^2 - 1]$, d'où $u_k(x) \le 4e^{-k^2x^2/2}$ en multipliant par $e^{-k^2x^2} > 0$.

Enfin, comme $kx \ge 1$, on a $(kx) \le (kx)^2$ ce qui donne la dernière inégalité : $e^{-(kx)^2/2} \le e^{(-kx)/2}$.

- b) Par sommation sur $k \in [1, +\infty[$, le a) donne pour $x \ge 1 : 0 \le S(x) \le \sum_{k=1}^{+\infty} 4e^{-kx/2} = \frac{4}{e^{x/2}-1}$
- 4. On sait que
- S est continue sur \mathbb{R}_+^* selon II.1.b).
- d'une part, d'après 2), S est bornée donc S est intégrable sur]0,1]. d'autre part, selon 3) b) S est positive et majorée par $x\mapsto \frac{4}{e^{x/2}-1}$ qui est intégrable $[1,+\infty[$. Finalement, S est bien intégrable sur $]0, +\infty[$.

Partie IV

- 1. Pour $(x,t) \in]-1, +\infty[\times]0, +\infty[$ posons $g(x,t) = t^x S(t)$.
- a) Pour montrer que F est bien définie, montrons que pour chaque $x \in]-1,+\infty[$, la fonction $t \mapsto g(x,t)$ est intégrable sur $]0,+\infty[$.
 - Pour tout $x \in]-1, +\infty[$, $t \mapsto g(x,t)$ est continue puisque S l'est.
- Comme S est bornée, S étant bornée, $g(x,t) = O(t^x)$, avec x > -1, donc $t \mapsto g(x,t)$ est
- intégrable en 0 par comparaison à l'exemple de Riemann, Enfin, selon III.3.a), $g(x,t) = \underset{t \to +\infty}{o} (1/t^2)$, donc $t \mapsto g(x,t)$ est intégrable en $+\infty$ par comparaison à l'exemple de Riemann.

On en déduit que $g(x,\cdot)$ est intégrable sur $]0, +\infty[$ et donc que F est bien définie sur $]-1, +\infty[$.

b) Pour montrer que $x \mapsto F(x)$ est continue, au moment où le D.M. a été posé, on n'avait pas le théorème de continuité pour les intégrales à paramètres, on pouvait utiliser le critère séquentiel de continuité, et le T.C.D.

Puisque depuis nous avons donné ce théorème de continuité :

(H1) pour tout $t \in]0, +\infty[, x \mapsto g(\cdot, t) \text{ est continue sur }]-1, +\infty[.$

(H2) Soit [a,b] un segment inclus dans $]-1,+\infty[$.

Définissons φ sur \mathbb{R}_+^* par $\varphi(t) = \begin{cases} t^a |S(t)| = |g(a,t)| & \text{pour } t \in]0,1] \\ t^b |S(t)| = |g(b,t)| & \text{pour } t \in [1,+\infty[\end{cases}$. La fonction φ est

intégrable sur $]0, +\infty[$, indépendante de x et $|g(x,t)| \le \varphi(t)$ pour tout $(x,t) \in [a,b] \times]0, +\infty[$.

Enfin bien sûr l'hypothèse (**H0**) $t \mapsto g(x,t)$ est intégrable pour tout x est vérifiée par a).

D'après le théorème de continuité des intégrales à paramètre, avec domination sur tout segment, F est continue sur $]-1, +\infty[$.

2. a) La fonction v_k est continue sur \mathbb{R}_+^* , $v_k(t) \underset{t\to 0}{\longrightarrow} 0$ (car x>0) et $v_k(t) = \underset{t\to +\infty}{o} (1/t^2)$, donc v_k est intégrable sur \mathbb{R}_+^* .

On envisage une intégration par parties

On envisage une integration par parties:

On pose
$$\begin{cases} f'(x) = u_k(x) \Leftarrow f(x) = te^{-k^2t^2} \\ g(x) = t^x \Rightarrow g'(x) = xt^{x-1} \end{cases}$$
Le terme de bord $f(x).g(x) = t^{x+1}e^{-k^2t^2}$ tend vers

une limite finie (0) en 0 et $+\infty$ donc l'I.P.P. est possible dans l'intégrale généralisée :

$$\int_0^{+\infty} v_k(t) dt = 0 - 0 + x \int_0^{+\infty} t^x e^{-k^2 t^2} dt = x \int_0^{+\infty} \left(\frac{\sqrt{u}}{k}\right)^x e^{-u} \frac{1}{2k\sqrt{u}} du$$

$$= \frac{x}{2k^{x+1}} \int_0^{+\infty} u^{(x-1)/2} e^{-u} du = \frac{x}{2k^{x+1}} \Gamma\left(\frac{x+1}{2}\right)$$

b) Par majoration:

$$\int_0^{+\infty} |v_k(t)| \, dt = \int_0^{+\infty} t^x |2k^2t^2 - 1| \, e^{-k^2t^2} \, dt \leq \int_0^{+\infty} t^x (2k^2t^2 + 1) \, e^{-k^2t^2} \, dt = \int_0^{+\infty} v_k(t) \, dt + 2 \int_0^{+\infty} t^x \, e^{-k^2t^2} \, dt.$$

En reprenant la fin du calcul du a) on obtient $\int_0^{+\infty} |v_k(t)| dt \le \frac{x+2}{2k^{x+1}} \Gamma\left(\frac{x+1}{2}\right)$.

Comme x + 1 > 1, $\int_{0}^{+\infty} |v_k|$ est terme général de série convergente comme un $O(1/k^{x+1})$.

c)
$$F(x) = \int_0^{+\infty} t^x \left(\sum_{k=1}^{+\infty} u_k(t)\right) dt = \int_0^{+\infty} \left(\sum_{k=1}^{+\infty} v_k(t)\right) dt.$$

II.1.b), a) et b) permettent d'appliquer le théorème d'intégration terme à terme. Avec le a), on obtient:

$$F(x) = \sum_{k=1}^{+\infty} \frac{x}{2k^{x+1}} \Gamma\left(\frac{x+1}{2}\right) = \frac{x}{2} \zeta(x+1) \Gamma\left(\frac{x+1}{2}\right).$$

3. a) Du fait de la continuité de Γ et du résultat admis dans l'énoncé, le 2.c) donne :

$$F(x) \xrightarrow[x \to 0]{} \frac{\Gamma(1/2)}{2} = \frac{\sqrt{\pi}}{2}$$

Mais on sait par 1. que F est continue sur] – 1 + ∞ [et donc en particulier en 0; il en résulte que:

$$\int_0^{+\infty} S(t) dt = F(0) = \frac{\sqrt{\pi}}{2}.$$

b) Comme pour tout $k \ge 1$, $\int_0^{+\infty} u_k = 0$ selon II.2.a), on constate que :

$$\int_0^{+\infty} \left(\sum_{k=1}^{+\infty} u_k \right) \neq 0 = \sum_{k=1}^{+\infty} \left(\int_0^{+\infty} u_k \right)$$

Remarquons aussi que, par contraposée du théorème d'intégration terme à terme du cours, cela permet de retrouver le résultat du II.2.b).

Exercice

1. F est de classe C^2 . D'après la formule de Taylor à reste intégral à l'ordre 1, appliquée à F entre n et n+1:

$$F(n+1) - F(n) = F'(n) \times 1 + \int_{n}^{n+1} (n+1-t) F''(t) dt = f(n) + \int_{n}^{n+1} (n+1-t) f'(t) dt.$$

2. $\int_{n}^{n+1} (n+1-t)|f'(t)| dt \le \int_{n}^{n+1} |f'(t)| dt$, qui est le terme général d'une série convergente, puisque f' est intégrable sur $[a, +\infty[$.

Par comparaison, la série $\sum_{n=0}^{\infty} \int_{n}^{n+1} (n+1-t) f'(t) dt$ est absolument convergente.

On déduit alors du 1. que la série $\sum f(n)$ a même nature que la série $\sum (F(n+1) - F(n))$, donc aussi même nature que la suite (F(n)) (équivalence suites-séries).

- 3. Par définition de la convergence d'une intégrale généralisée, la suite (F(n)) converge, d'où le résultat d'après 2.
- 4. a) f' etant intégrable sur $[a, +\infty[$, f admet une limite finie en $+\infty$, qui est en particulier celle de la suite (f(n)). Comme $\sum f(n)$ converge, cette limite est nulle.
 - b) Selon a), d'après la définition de la limite, on a un $n_1 \in \mathbb{N}$ tel que :

$$\forall t \ge n_1 |f(t)| \le \varepsilon/2$$

D'autre part, par définition de L, on a un $n_2 \in \mathbb{N}$ tel que

$$\forall n \ge n_2 \left| F(n) - L \right| \le \varepsilon/2.$$

On en déduit que pour $x \ge n_0 = \max(n_1, n_2)$ (ce qui implique $|x| \ge n_0$):

$$\begin{aligned} \left| F(x) - L \right| & \leq \left| F(x) - F(\lfloor x \rfloor) \right| + \left| F(\lfloor x \rfloor) - L \right| = \left| \int_{\lfloor x \rfloor}^{x} f(t) \, dt \right| + \left| F(\lfloor x \rfloor) - L \right| \\ & \leq \int_{\lfloor x \rfloor}^{x} \left| f(t) \right| dt + \frac{\varepsilon}{2} \leq \left(x - \lfloor x \rfloor \right) \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \leq \varepsilon \end{aligned}$$

- c) On a démontré au b), par retour à la définition, que F admet L pour limite en $+\infty$. Par définition, cela signifie que $\int_a^{+\infty} f$ converge (et aussi que $\int_a^{+\infty} f = L$).
- 5. Pour $t \in [1, +\infty[$ posons $f(t) = \frac{\cos(\ln t)}{t}$

Première idée sur cet exemple f est la dérivée de $\sin(\ln(t))$: ça doit servir!

La fonction f est de classe C^1 et

$$\left|f'(t)\right| = \left|-\frac{\cos(\ln t)}{t^2} - \frac{\sin(\ln t)}{t^2}\right| \le \frac{2}{t^2}.$$

Par comparaison à l'exemple de Riemann, on en déduit que f' est intégrable sur $[1, +\infty[$.

Par ailleurs, $\int_1^x f(t) dt = \sin(\ln x)$, qui n'a pas de limite quand x tend vers $+\infty$, donc $\int_1^{+\infty} f$ diverge.

5

Par contraposée du 4., on en déduit que la série $\sum f(n) = \sum \frac{\cos(\ln n)}{n}$ diverge.