Banque CCINP: Ex. 37, 39, 40.

Exercise 1. Pour $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ et p > 0, notons : $N_p(x) = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$.

- a) On suppose ici n = 2, i.e. on se place dans \mathbb{R}^2 . On note $B_p = \{x \in \mathbb{R}^2, N_p(x) \le 1\}$. Dessiner B_p pour $p = \frac{1}{2}, 1, \frac{3}{2}, 2, 3$.
- b) On suppose toujours n = 2. Montrer que si p < q, alors $B_p \subset B_q$.
- c) Justifier que si N est une norme quelconque sur un \mathbb{R} -e.v. E alors les boules pour N sont des ensembles convexes de E.
- d) Montrer que si p < 1 alors N_p n'est pas une norme sur \mathbb{R}^n .

On admettra ici le fait que N_p est une norme si $p \ge 1$.

Exercice 2. On considère $E = \mathbb{R}^2$ et pour chaque $a \in \mathbb{R}$, et chaque $u = (x, y) \in E$, on note $q_a(u) = x^2 + 2axy + y^2$.

Pour quelles valeurs de $a \in \mathbb{R}$ peut-on définir une norme sur \mathbb{R}^2 en posant $||u||_a = \sqrt{q_a(u)}$?

Exercice 3 (De la boule à la norme). a) Soit N une norme sur un e.v.n. E. Soit B la boule unité fermé pour N. Montrer que pour tout $x \in E \setminus \{0\}$, $N(x) = \inf\{t > 0, x/t \in B\}$

- b) Le a) peut donner l'idée de fabriquer une norme à partir d'une « patate » B dans E. Quelle sont cependant des conditions nécessaires sur B pour qu'elle soit la boule unité fermée d'une norme?
- c) On connaît la forme de la boule unité pour N_{∞} . En modifiant un peu cette norme montrer que tout parallélogramme non aplati centré en 0 dans \mathbb{R}^2 est la boule unité d'une norme sur \mathbb{R}^2 .

Exercice 4 (Plein de normes sur les polynômes et leurs non équivalence...). On définit cinq applications de $\mathbb{C}[X]$ dans \mathbb{R}_+ de la façon suivante : si $P = \sum_{k=0}^n a_k X^k$, $N_0(P) = \max_{0 \le k \le n} |a_k|$, $N_1(P) = \sum_{k=0}^n |a_k|$, $N_2(P) = \sup_{t \in [0,1]} |P(t)|$ $N_3(P) = \sup\{|P(z)|, \text{pour } z \in \mathbb{C}, \text{ et } |z| = 1\}$, $N_4(P) = \int_0^1 |P(t)| dt$

Montrer que ce sont des normes sur $\mathbb{C}[X]$ et que N_0, N_1, N_2, N_4 sont deux à deux non équivalentes, ainsi que N_0, N_2, N_3, N_4 .

Exercice 5. Soit (E, || ||) un e.v.n. On dit que la boule unité B est strictement convexe ssi $\forall (x, y \in B^2, \forall t \in]0, 1[, x \neq y \Rightarrow || (1-t)x + ty|| < 1.$

- a) Montrer que si $\| \|$ est une norme euclidienne, alors B est strictement convexe.
- b) Donner des exemples de normes où la boule unité n'est pas strictement convexe.

Exercice 6 (Mélange de N_1 et N_{∞} dans un espace de fonctions). Soit $\alpha \in [0,1]$. Pour $f \in \mathcal{C}([0,1],\mathbb{R})$ on note $N_{\alpha}(f) = \int_0^{\alpha} |f| + \max_{[\alpha,1]} |f|$.

- a) Montrer que N_{α} est une norme.
- b) Comparer les normes N_{α} entre elles : sont-elles équivalentes?

Exercice 7 (Normes plus fines, caract. séquentielle). Soit E un \mathbb{R} -e.v. et N et N' deux normes sur E.

On dit que N est plus fine que N' si, et seulement si, il existe un $\alpha > 0$, tel que $N' \leq \alpha N$.

- a) Caractérisation séquentielle : montrer que N est plus fine que N' si, et seulement si, toute suite convergeant vers 0 au sens de la norme N converge également vers 0 au sens de la norme N'.
 - b) En déduire une caractérisation séquentielles de normes équivalentes.

Exercice 8. Pour tout $f \in E = C^1([0,1],\mathbb{R})$, on pose $N(f) = |\int_0^1 f| + ||f'||_1$ et $N'(f) = |f(0)| + ||f'||_1$. Montrer que N et N' sont des normes sur E et qu'elles sont équivalentes.

Exercice 9. Pour tout $A \in M_n(\mathbb{C})$ on note $||A||_{\infty} = \sup_{1 \le i, j \le n} |a_{i,j}|$ et $||A|| = n||A||_{\infty}$. Montrer que pour tout $A, B \in M_n(\mathbb{C})$, $||A.B|| \le ||A|| \cdot ||B||$.

Exercice 10. Soit A une partie bornée de l'espace vectoriel normé $(E, N), \mathcal{L}$ l'espace vectoriel des applications lipschitziennes de A dans E. En tant que sous-espace vectoriel de $\mathcal{B}(A, E), \mathcal{L}$ est muni de la norme induite par N_{∞} . Soit $a \in A$.

- a) Pour $f \in \mathcal{L}$, soit $K_f = \{k \in \mathbb{R}_+ \mid \forall (x,y) \in A^2, N(f(x) f(y)) \leq kN(x y)\}$. On note $c(f) = \inf(K_f)$. Montrer que $\mathcal{N} : \mathcal{L} \to \mathbb{R}_+, f \mapsto c(f) + N(f(a))$ est une norme sur \mathcal{L} .
- b) Dans le cas où $E = \mathbb{R}$ et A = [0,1], montrer que N_{∞} et \mathcal{N} ne sont pas des normes équivalentes sur \mathcal{L} .