DM 3 : Plusieurs aspects de la réduction de Jordan, solution

- 0) a) On prend x tel que $u^{n-1}(x) \neq 0$. Montrons que la famille $(x, u(x), \dots, u^{r-1}(x))$ est libre. Soit $(\lambda_0, \dots, \lambda_{r-1}) \in K^r$ tels que $\lambda_0 x + \lambda_1 u(x) + \dots + \lambda_{r-1} u^{r-1}(x) = 0$ (*). Montrons par récurrence finie que pour chaque $i, \lambda_i = 0$.
 - Initialisation : on applique u^{r-1} à (*), on a $\lambda_0 u^{r-1}(x) + 0 = 0$ ce qui donne $\lambda_0 = 0$.
 - Hypothèse de récurrence (forte) : on suppose que pour un $i \le r-2$, on a montré que $\lambda_0 = \lambda_1 = \cdots = \lambda_i = 0$. Montrons que $\lambda_{i+1} = 0$.

Or avec l'hypothèse de récurrence, (*) est devenue : $\lambda_{i+1}u^{i+1}(x) + \cdots + \lambda_{r-1}u^{r-1}(x) = 0$. On applique u^k à cette égalité, avec k = r - i - 2 de sorte que $(u^{i+1})^k = u^{r-1}$.

Alors on obtient $\lambda_{i+1}u^{r-1}(x) = 0$ et donc $\lambda_{i+1} = 0$.

La récurrence est établie, et la famille est bien libre.

- b) Soit $y \in V$. On l'écrit $y = \sum_{k=0}^{r-1} \lambda_k u^k(x)$. Alors $u(y) = \sum_{k=0}^{r-1} \lambda_k u^{k+1}(x)$ et comme $u^r(x) = 0$, on a $u(y) = \sum_{k=0}^{r-2} \lambda_k u^{k+1}(x) = \sum_{i=1}^{r-1} \lambda_{i-1} u^i(x) \in V$.
- c) Cette matrice est exactement J_r .
- d) Si r = n, on a E = V et on a le théorème 2 avec un unique bloc de Jordan.
- e) On montre le théorème 2 (reformulation géométrique) par récurrence sur dim E.
 - Initialisation : Si dim(E) = 1 il n'y a rien à faire car un nilpotent d'un e.v. de dim. 1 est l'application nulle et sa matrice est nulle et J_1 = 0.
 - Hypothèse de réc. forte : on suppose que le théorème 2 est vrai pour tout les e.v. de dim. < n pour un $n \ge 1$ donné.

Soit E un K-e.v. de dim. n et $f \in \mathcal{L}(E)$ nilpotent. Soit V comme ci-dessus et W un supplémentaire de V stable par f.

On peut appliquer l'H.R. à $f_{|W}$ ce qui fournit une base \mathcal{B}_W de W telle que $\operatorname{Mat}_{\mathcal{B}_W}(f_{|W}) = \operatorname{diag}(J_{r_2}, \ldots, J_{r_s})$.

On considère alors $\mathcal{B} = (\mathcal{B}_x, \mathcal{B}_W)$ qui est une base de E. Alors $\operatorname{Mat}_{\mathcal{B}}(f) = \operatorname{diag}(J_r, J_{r_2}, \dots, J_{r_s})$ et la réc. est établie.

1) a) On complète la famille libre $(x, u(x), \dots, u^{r-1}(x))$ en une base \mathcal{B} de E de la forme :

$$\mathcal{B} = (x, u(x), \dots, u^{r-1}(x), v_r, \dots, v_{n-1})$$

On sait que pour chaque base $\mathcal{B} = (v_0, \dots, v_{n-1})$ de E, et pour chaque n-uplet arbitraire $(y_0, \dots, y_{n-1}) \in K^n$, il existe une et une unique $\varphi \in \mathcal{L}(E, K)$ telle que

$$\forall i \in [0, n-1], \varphi(v_i) = y_i.$$

En prenant ici $y_j = 0$ pour $j = 0, ..., r - 2, y_{r-1} = 1$ et par exemple $y_i = 0$ pour $i \ge r$, on a l'existence d'une forme linéaire φ comme demandée.

b) Comme φ n'est pas l'application nulle, v non plus. Comme Im $v \subset \text{Vect}(x)$, rg(v) = 1.

c) Soit
$$i \in [0, r-1]$$
. Par déf. $p(u^i(x)) = \sum_{k=0}^{r-1} u^k (v(u^{r-1-k}(u^i(x)))) = \sum_{k=0}^{r-1} u^k (v(u^{r-1-k+i}(x)))$.

Comme $v(u^j(x)) = 0$ sauf si j = r - 1 le seul terme possiblement non nul de cette somme est celui dont l'indice k vérifie r - 1 - k + i = r - 1 donc pour k = i.

Ainsi $p(u^i(x)) = u^i(v(u^{r-1}(x)))$. Et comme par déf. $v(u^{r-1}(x)) = x$, on conclut bien que :

$$p(u^i(x)) = u^i(x).$$

Ainsi p coïncide avec l'identité sur la base $(x, u(x), \dots, u^{r-1}(x))$ de V donc, par linéarité $p_{|V} = \mathrm{id}_{V}$.

- d) Comme Im v = K.x, on sait que Im $p \in \sum_{k=0}^{r-1} u^k(K.x) \in V$ donc Im $p \in V$.
- e) On a montré au c) que $V \subset Fix(p)$ où on note ici $Fix(p) = \{y \in E, p(y) = y\}$. Au d), on a montré que $\operatorname{Im}(p) \subset V$. Donc avec ces deux inclusions, on a $\operatorname{Im}(p) \subset V \subset$ Fix(p). Or l'inclusion réciproque $Fix(p) \subset Im(p)$ est toujours vraie.

Ainsi on a montré que $\operatorname{Im} p = V = \operatorname{Fix} p$ (*)

Mais cette égalité $\operatorname{Im}(p) = \operatorname{Fix}(p)$ entraı̂ne que $p \circ p = p$ et donc | p | est donc un projecteur et son image est V par (*).

f) On calcule $u \circ p = \sum_{k=0}^{r-1} u^{k+1} \circ v \circ u^{r-1-k}$ (1).

Et $p \circ u = \sum_{k=0}^{r-1} u^k \circ v \circ u^{r-k}$. Mais dans cette somme le terme d'indice 0 est nul car $u^r = 0$.

Donc $p \circ u = \sum_{k=1}^{r-1} u^k \circ v \circ u^{r-k}$ (2).

Pour se rapprocher de (1), on fait dans (2) le changement d'indice k = i + 1 i.e. i = k - 1, ce qui donne :

 $p \circ u = \sum_{i=0}^{r-2} u^{i+1} \circ v \circ u^{r-i-1}$. Ceci donne exactement la même expression que dans (1), à condition de voir que dans (1) le terme d'indice k=r-1 est nul car $u^{r-1+1}=0$.

Ainsi
$$p \circ u = u \circ p$$
.

- g) On sait alors que Kerp est stable par u et c'est un supplémentaire de $V = \operatorname{Im} p$ puisque p est un projecteur
- 2) Méthode 2 : matricielle par blocs
 - a) On prend u canoniquement associé à N, et x tel que $u^{r-1}(x) \neq 0$. La famille $(x, u(x), \dots, u^{r-1}(x))$ est encore libre. On la complète en une base de E. Dans cette base \mathcal{B} , la matrice de uest de la forme demandée.
 - b) La matrice T_X est triangulaire supérieure avec toutes ses entrées diagonales égales à 1 donc inversible.

On cherche pour T_X une matrice inverse du même type par bloc $Z = \begin{pmatrix} I_r & Y \\ 0 & I_{n-r} \end{pmatrix}$.

Alors, par produits par blocs, $T_X.Z = \begin{pmatrix} I_r & X+Y \\ 0 & I_{n-r} \end{pmatrix}$.

Il suffit donc de prendre Y = -X et $Z = \begin{pmatrix} I_r & -X \\ 0 & I_{n-r} \end{pmatrix}$ est l'inverse de la matrice T_X .

c) Avec le b), on sait que $T_X A T_X^{-1} = T_X A T_{-X}$

Or $T_X A = \begin{pmatrix} I_r & X \\ 0 & I_{n-r} \end{pmatrix} \begin{pmatrix} J_r & B \\ 0 & C \end{pmatrix} = \begin{pmatrix} J_r & B + XC \\ 0 & C \end{pmatrix}$.

Donc $(T_XA)T_{-X} = \begin{pmatrix} J_r & B+XC \\ 0 & C \end{pmatrix}$. $\begin{pmatrix} I_r & -X \\ 0 & I_{n-r} \end{pmatrix} = \begin{pmatrix} J_r & -J_rX+B+XC \\ 0 & C \end{pmatrix}$ On a donc montré la relation de l'énoncé avec $Y = -J_pX+B+XC$ et Z = C.

- d) i) On calcule immédiatement $J_rX=\begin{pmatrix} X_2\\ \vdots\\ X_r \end{pmatrix}$ (si on veut par produit par blocs $(1,1)\times$ (1, n-r)).
 - ii) Au c), on a vu que $Y = -J_rX + B + XC$.

En notant, pour chaque matrice M, M_i la ligne i de M, la relation précédente donne pour tout $i = 1, \ldots, r$:

$$Y_i = -(J_r X)_i + B_i + X_i C.$$

pour $i \le r - 1$, on a donc, vu le (i) :

$$Y_i = -X_{i+1} + B_i + X_i C.$$

Pour que $Y_1 = \cdots = Y_{n-1} = 0$, il faut et il suffit que le vecteur X vérifie le système :

$$\begin{cases}
0 = -X_2 + B_1 + X_1C, \\
0 = -X_3 + B_2 + X_2C, \\
\vdots \\
0 = -X_n + B_{n-1} + X_{n-1}C.
\end{cases}$$
 On fixe arbitrairement X_1 , par exemple $X_1 = 0$, alors

on résout le système ligne après ligne : la première donne la valeur de X_2 qui convient, qu'on injecte dans la seconde ligne pour avoir celle de X_3 jusqu'à la dernière ligne.

- e) Par la déf. du c), A' est semblable à A. Par la déf. du a), A est semblable N. Par transitivité, A' est semblable à N.
 - Par déf. N est nilpotente d'indice r donc A', semblable à N, est aussi nilpotente d'indice r.
- f) Soit f l'endomorphisme canoniquement associé à A' et $\mathcal{B} = (e_1, \dots, e_r, e_{r+1}, \dots, e_n)$ la base canonique de $E = K^n$.

On note $F = \text{Vect}(e_{r+1}, \dots, e_n)$.

Soit $i \in [r+1, n]$. Comme les r-1 premières lignes de la matrices Y sont nulles, on a $f(e_i) = y_i e_r + x$ (*) où $y_i \in K$, et $x \in F$.

Autrement dit $f(F) \subset \text{Vect}(e_r, \dots, e_n)$ (**)

Par récurrence, comme $f(e_r) = e_{r-1}$, on en déduit que $\forall k \in \{1, ..., r-1\}, f^k(F) \subset \text{Vect}(e_{r+1-k}, ...e_n)$.

En appliquant f^{r-1} aux deux membres de (*), on a $f^r(e_i) = y_i f^{r-1}(e_r) + f^{r-1}(x)$ c'est-à-dire $0 = y_i \cdot e_1 + f^{r-1}(x)$.

Comme, par (**), $f^{r-1}(x) \in \text{Vect}(e_2, ..., e_n)$ on conclut donc que $y_i = 0$. Par conséquent la dernière ligne $(y_{r+1}, ..., y_n)$ de Y est nulle, donc Y = 0.

3) a) Pour un bloc de Jordan $J_n \in M_n(K)$, $\operatorname{rg}(J_n^q) = n - q$ si $q \le n$ et $\operatorname{rg}(J_n^q) = 0$ si $q \ge n$. Comme le rang d'une matrice diagonale par blocs est la somme du rang des blocs, et comme pour chaque s il y a t_s blocs de Jordan de taille s, on en déduit que

$$r_q := \operatorname{rg}(A^q) = \sum_{s=1}^n t_s \operatorname{rg}(J_s^q) = \sum_{s=q}^n t_s (s-q).$$

b) De même $r_{q-1} = \sum_{s=q-1}^{n} t_s(s-(q-1)) = \sum_{s=q-1}^{n} t_s(s-q) + \sum_{s=q-1}^{n} t_s = \left(\sum_{s=q}^{n} t_s(s-q)\right) - t_{q-1} + \sum_{s=q-1}^{n} t_s$

Donc par différence $r_{q-1} - r_q = \sum_{s=q}^{n} t_s$

Pour $q \ge 2$, en faisant la différence des deux égalités : $\begin{cases} r_{q-1} - r_q = \sum_{s=q}^n t_s \\ r_{q-2} - r_{q-1} = \sum_{s=q-1}^n t_s, \end{cases}$ on ob-

tient (on retrouve dans ce cas particulier le fait que la suite des dimensions des images s'essoufle dans sa décroissance :)

$$(r_{q-2} - r_{q-1}) - (r_{q-1} - r_q) = t_{q-1}$$

c) Cette égalité montre que $t_1, t_2, \ldots, t_{n-1}$ ne dépendent que de la suite (r_k) donc sont définis de façon unique par A.

Enfin, $t_n = n - (t_1 + \dots + t_{n-1})$ donc t_n est aussi déterminé de manière unique!