DM 2 : Endomorphismes nilpotents et algèbres de Lie

Pour le 26 septembre 2022

I Généralités sur les endomorphismes nilpotents :

Soit E un \mathbb{K} -e.v. de dim. n et $u \in \mathcal{L}(E)$

- 1) On suppose que u est nilpotent d'indice d. Démontrer que $d \le n$.
- 2) Démonstration géométrique du fait qu'une matrice Triangulaire Supérieure Stricte (T.S.S.) est nilpotente
 - a) Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. On note $V_0 = \{0\}$ et pour tout $k \in [1, n]$, $V_k = \text{Vect}(e_1, \dots, e_k)$.

On suppose que pour tout $k \in [1, n]$, $u(V_k) \subset V_{k-1}$. Montrer que u est nipotent.

- b) En déduire qu'une matrice T.S.S. est toujours nilpotente.
- 3) Une démonstration du fait qu'un endomorphisme nilpotent peut être représenté par une matrice T.S.S. (comparer au cours du R3 plus tard, ce sera évident!)
 - a) On suppose que u est nilpotent d'indice d. Montrer que :

$$\{0\} \subseteq \ker u \subseteq \ker u^2 \subseteq \cdots \subseteq \ker u^{d-1} \subseteq \ker u^d = E.$$

- b) En reprenant les notations introduites plus haut, en déduire qu'il existe une base (e_1, \ldots, e_n) telle que pour tout $k \in [1, n], u(V_k) \subset V_{k-1}$.
- 4) Soit \mathcal{B}_0 une base de \mathbb{K}^2 et $(u, v) \in \mathcal{L}(\mathbb{K}^2)$ dont les matrices respectives dans \mathcal{B}_0 sont $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Montrer qu'il n'existe pas de base \mathcal{B} de E dans laquelle les matrices de u et de v soient simultanément T.S.S.
- 5) Soit $M = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$ une matrice (dite « triangulaire par bloc »), où les blocs A et D sont des matrices carrées quelconques, pas forcément de même taille.

Montrer que M est nilpotente si, et seulement si, A et D le sont.

6) Donner un exemple de matrice nilpotente dont aucune des entrées n'est nulle.

II Théorème sur les « algèbres de Lie nilpotentes »

Soit E un \mathbb{K} -e.v. de dimension finie n.

Définition (crochet de Lie) Pour tout $(u, v) \in \mathcal{L}(E)^2$, on note $[u, v] = u \circ v - v \circ u$.

De même pour tout $(A, B) \in M_n(\mathbb{K})^2$, [A, B] = AB - BA.

Une partie V de $\mathscr{L}(E)$ (resp. de $M_n(\mathbb{K})$) est dite stable par le crochet de Lie si, et seulement si, pour tout $(u,v) \in V^2$, $[u,v] \in V$. (de même pour les matrices).

Terminologie : dans ce problème, on appelle *algèbres de Lie* tout s.e.v. d'un espace vectoriel $\mathcal{L}(E)$ qui est stable par le crochet de Lie.

Culture: ces « algèbres d'un type différent » sont très importantes en maths et en physique...

Propriété utile du crochet de Lie : l'identité de Jacobi On vérifie (calcul!) que :

$$\forall (u, v, w) \in \mathcal{L}(E)^3, [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0.$$

Notation : Soit $u \in \mathcal{L}(E)$ (resp. $A \in M_n(\mathbb{K})$).

Pour tout $f \in \mathcal{L}(E)$ (resp. $B \in M_n(\mathbb{K})$), on définit $\Phi_u(f) = uf - fu = [u, f]$ (resp. $\Phi_A(B) = AB - BA = [A, B]$).

Le but de cette partie est de démontrer les résultats suivants

Théorème 1 Soit E un \mathbb{K} -e.v. de dimension finie n et soit N un s.e.v. de $\mathcal{L}(E)$, stable par le crochet de Lie, dont tous les éléments sont nilpotents. Alors il existe un $x \in E \setminus \{0\}$ tel que pour tout $u \in N$, u(x) = 0.

Ce théorème a la conséquence, pour nous plus parlante, suivante :

Théorème 2 : Soit E un \mathbb{K} -e.v. de dim. finie et V un s.e.v. de $\mathscr{L}(E)$ stable par le crochet, dont tous les éléments sont nilpotents. Alors il existe une base de E dans laquelle tous les éléments de V sont représentés par des matrices T.S.S.

- 1) Soit $u \in \mathcal{L}(E)$ et $\Phi_u : f \in \mathcal{L}(E) \mapsto [u, f]$.
 - a) Montrer que $\Phi_u \in \mathcal{L}(\mathcal{L}(E))$.
 - b) Montrer que si u est nilpotent alors Φ_u est nilpotent dans $\mathcal{L}(\mathcal{L}(E))$.
 - c) Montrer que $\Phi: \mathcal{L}(E) \to \mathcal{L}(\mathcal{L}(E))$, $u \mapsto \Phi_u$ est un « morphisme pour le crochet de Lie », ce qui signifie que :

$$\forall (u,v) \in \mathcal{L}(E)^2, \ \Phi_{[u,v]} = [\Phi_u, \Phi_v].$$

- 2) Démontrer le théorème 1 dans le cas particulier où N est de dimension 1.
- Soit $d \ge 2$. On suppose que le théorème 1 est vrai pour toute algèbre de Lie dont tous les éléments sont nilpotents, de dimension inférieure ou égale à d-1. Soit N de dimension d vérifiant les hypothèses du théorème. On remarque que pour chaque $u \in N$, Φ_u peut être vu comme un endomorphisme de N.
 - 3) Montrer qu'il existe un sous-espace vectoriel N_1 de N stable par le crochet de Lie, distinct de N et de $\{0\}$, de dimension maximale.

Soit S un supplémentaire de N_1 de N. Soit (e_1, \ldots, e_r) une base de N_1 et (e_{r+1}, \ldots, e_d) une base de S.

On note $\mathcal{B} = (e_1, \dots, e_d)$ la base de N ainsi obtenue. (Attention les e_i sont des endomorphismes!).

- 4) (i) Montrer que pour tout $u \in N_1$, $\operatorname{Mat}_{\mathcal{B}}(\Phi_u)$ est de la forme $\begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$ où $A \in M_r(\mathbb{K})$, $B \in M_{r,d-r}(\mathbb{K})$ et $D \in M_{d-r}(\mathbb{K})$.
 - On note $\rho(u)$ la matrice $D \in M_{d-r}(\mathbb{K})$.
 - (ii) Montrer que l'application $\rho: N_1 \to M_{d-r}(\mathbb{K}), u \mapsto \rho(u)$ est une application linéaire qui préserve le crochet i.e. telle que pour tout $(u,v) \in N_1^2$, $\rho([u,v]) = [\rho(u),\rho(v)]$.
- 5) Montrer qu'il existe un $X_0 \in M_{d-r,1}(\mathbb{K})$ non nul tel que $\rho(u).X_0 = 0$ pour tout $u \in N_1$.
- 6) En déduire qu'il existe un $v_0 \in S$ non nul tel que $\Phi_u(v_0) \in N_1$ pour tout $u \in N_1$.
- 7) En déduire que $\dim(N_1) = d 1$.
- 8) Soit E_1 l'ensemble des vecteurs x de E tels que pour tout $u \in N_1$, u(x) = 0. Montrer que E_1 est un s.e.v. de E stable par tout élément de N.
- 9) En déduire qu'il existe un $x_0 \in E$ non nul tel que pour tout $f \in N$, $f(x_0) = 0$ et conclure pour le théorème 1.
- 10) En déduire le théorème 2.

Remarque: un s.e.v. de $M_n(\mathbb{K})$ stable par produit sera en particulier stable par crochet.