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Résumé

Dans ce travail, nous étudions les éléments superficiels d’un idéal re-
lativement à un module d’un point de vue géométrique, en terme d’écla-
tements. Ils sont caractérisés par une propriété de leur transformée faible
sur cet éclatement. Nous donnons alors comme application directe une
autre caractérisation de ces éléments superficiels qui est le pendant géomé-
trique d’un théorème de D. Kirby. On indique aussi comment le même
résultat peut aussi être obtenu algébriquement à partir d’un théorème de
Flenner et Vogel.

Abstract

In this paper,1 we study superficial elements of an ideal with respect
to a module from a geometrical point of view, using blowing-ups. The
notion of weak transform is particularly relevant to this study. We use
this viewpoint to get another natural characterization of these elements,
which turns out to be equivalent to one given by D. Kirby in algebraic
terms. We also indicate how the same result may be algebraically derived
from a more recent theorem of Flenner and Vogel.

Introduction

The notion of superficial element was introduced by P. Samuel in [Sa] for the
study of multiplicities of primary ideals in local rings.

As is well-known and recalled in § 1, superficial elements are not only well-
behaved with respect to multiplicities but also with respect to Hilbert polyno-
mials.

More basically, superficial elements can be defined for any ideal simply by
a property of the kernel of the multiplication by the class of this element in
the associated graded ring (resp. module) and an at first sight surprising fact
(yielding the afore-mentioned nice behaviour w.r.t. numerical invariants) is that
this property forces the cokernel of the same multiplication map to be very nice.

This property is part of a characterization of superficial elements given by
D. Kirby, recalled in thm. 1.3.

The purpose of this paper is to give a more picturesque approach to super-
ficial elements using projective geometry and blowing-up schemes.
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It is natural to translate the condition to be superficial as a property on the
Proj on the associated graded ring. However, one gets further understanding if
one embeds this Proj as the exceptional divisor of the blow-up scheme.

A first characterization of superficial elements on the blow-up is given at the
end of § 2 and is expressed in term of the weak transform of these elements (cf.
prop. 2.6).

In § 3, we compare this weak transform to the more usual strict (or proper
transform) giving a criterion of equality.

Section 4 contains our main result: since superficiality is a condition of
regularity on the exceptional divisor of the blow-up, i.e. on a Cartier subscheme,
it may be used to define a two-terms regular sequence, which, once inverted,
give two non-trivial regularity conditions, the second precisely connecting the
weak and strict transforms (thm. 4.3).

In Section 5 we go back to Kirby’s formulation showing that the two condi-
tions found in our theorem 4.3 exactly give the two Kirby’s conditions.

Eventually, we mention in the last section how Kirby’s result may be also
derived from a more general result by Flenner and Vogel which makes clear
the connection between kernel and cokernel of certain maps between associated
graded rings. However, the proof is not so direct in the case of superficial
elements which may be zero divisors.

We end this introduction by setting-up hypotheses and notation valid through-
out this paper:
Setup –Let R always stand for a noetherian ring, I an ideal of R and M a
finitely generated R-module. It is standard to consider the following graded
rings and modules (cf. e.g. [Ei] Chap. 5 for the ring and module structure):

G(R) := GI(R) := ⊕
n∈N

In/In+1, (1)

G(M) := GI(M) := ⊕
n∈N

InM/In+1M, (2)

associated to the filtration of R by the (In)n∈N .
We will also denote Gn for the component of degree n of a graded module G,

and write G(s) for the graded module with “shifted” gradation [G(s)]n := Gn+s.

1 Superficial elements after Samuel and Kirby

Multiplication by f̄ – For an element f ∈ Is \ Is+1 one considers its so-called
initial form f̄ which is its class in Is/Is+1.

Multiplication by f̄ defines a map of degree zero between graded modules:

mf̄ : G(M) → G(M)(s). (3)

Being interested in the properties of this map, one studies the associated exact
sequence:

0 → ker mf̄ → G(M) → G(M)(s) → G(M)(s)/f̄ .G(M) → 0. (4)

Considering also the graded module G(M/fM) defined as in (2) replacing M
by M/fM , it is easy to check that, denoting by inI(fM) the graded submodule
of G(M) whose n-th component is:

[inI(fM)]n := (InM ∩ fM)/In+1M, (5)
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one has the isomorphism:

G(M/fM) ∼= G(M)/ inI(f.M).

In particular, one has a natural surjection:

G(M)/f̄G(M) → G(M/fM), (6)

corresponding to the obvious inclusion f̄ .G(M) ⊂ inI(fM).

Introduction of superficial elements – As he was interested in properties
of Hilbert functions (see below), Samuel only considered properties valid for
components of large enough degree and introduced (cf. [Sa] p. 182, the following
equivalent formulation is the one in [AC] VIII § 7 No. 5 p. 79):

Definition 1.1. An element f ∈ Is \ Is+1 is said to be superficial (of degree s)
for M with respect to I if, and only if, there is an integer n0 such that the
multiplication map mf̄ defined in (3) is injective from G(M)n−s → G(M)n for
all n ≥ n0.

A somewhat surprising property of superficial elements is the following:

Proposition 1.2. Let R be a noetherian ring and M a finitely generated R-
module. Let I be an ideal of R.

If f ∈ Is \ Is+1 is superficial for M w.r.t. I then the epimorphism (6) is an
isomorphism in degree n ≥ n0, and the following sequence:

0 → G(M)(−s)
mf̄→ G(M) → G(M/fM) → 0, (7)

is exact between homogeneous components of degree n ≥ n0.2

From the view-point of comparison of graded properties of M and M/fM ,
this miracle says that injectivity of mf̄ is enough to get “the right cokernel”.

Application to Hilbert functions – If one is interested (as Samuel originally
was) by properties of Hilbert functions, one takes R to be a noetherian local
ring and I an ideal such that the length l(M/IM) is finite, then one defines the
Hilbert function of G(M) as:

HI,M (n) := l(InM/In+1M),

and the exact sequence (7) gives the nice relationship for all n ≥ n0:

HI,M/fM (n) = HI,M (n)−HI,M (n− s),

which allows to compute this Hilbert function by induction on dimension.

Characterization of superficial elements by prop. 1.2
In fact, prop. 1.2 is part of a full characterization of superficial elements by

D. Kirby (in [Ki] thm. 3) which we now state3. We use the following standard
notation (cf. e.g. [Ei] § 3.6): denote by (0 :M I) := {m ∈ M,mI = 0} and
ΓI(M) := (0 :M I∞) := ∪n∈N(0 :M In).

2the n0 is intended to be the same as in def. 1.1
3In loc. cit. it was formulated only for M = R but the generalization to any R-module is

straightforward.
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Theorem 1.3. Let R be a noetherian ring, I an ideal contained in the Jacobson
radical of R (cf. [Ei] 4.8), and M a finitely generated R-module.

An f ∈ Is \ Is+1 is superficial for M w.r.t. I if and only if both of the
following conditions hold:
(i) multiplication by f from M/ΓI(M) → M/ΓI(M) is injective,
(ii) the map in (6): G(M)/f̄G(M) → G(M/fM) is an isomorphism between
components of degree n ≥ n0.

2 Superficial elements, definition on the blowup

Before shifting to the language of projective geometry, we remind the reader
about another piece of commutative algebra:

Associated primes – From the properties relating associated primes and non
zero divisors (cf. [Ei] thm. 3.1) we immediately get (cf. [AC] VIII p. 79):

Remark 2.1. With the same notation as in def. 1.1 and considering the set
Ass(G(M)) of homogeneous prime ideals in G(R) associated to G(M) (cf. [Ei]
Chap. 3) the condition f is superficial is equivalent to the condition that f̄ does
not belong to the pi ∈ Ass(G(M)) such that pi does not contain G(R)1 = I/I2.

Projective Formulation – Both def. 1.1 and rem. 2.1 are more naturally
formulated using projective geometry.

Denote EI := Proj(G(R)), then the G(R)-graded module G(M) defines a

(sheaf of) OEI
-module G(M) := G̃(M) using the standard functor ˜ (cf. e.g.

[Ii] § 3.4), which also gives a map:

m̃f̄ : G(M) → G(M)(s), (8)

associated to the map mf̄ defined in (3).
A basic fact about this functor ˜ is (cf. e.g. [Ii] § 7.1 or [EGA] II § 2.7):

Lemma 2.2. If R is a noetherian ring and M is a finitely generated module,
then the injectivity of the map mf̄ : G(M)n → G(M)n+s for n large enough is
equivalent to the injectivity of m̃f̄ : G(M) → G(M)(s).

In the same spirit, the subset Ass(G(M)) of points in EI associated to the
OEI

-module G(M) (cf. [EGA] IV 3.1) precisely corresponds to the elements of
Ass(G(M)) fulfilling the condition in rem. 2.1 (called projectively relevant).

Finally, consider the subscheme of EI defined by the homogeneous ideal
f̄ .G(R) that we denote by (f)#EI

(this notation is to be explained below). With
the foregoing remarks, we reformulate def. 1.1 and rem. 2.1 as follows:

Lemma 2.3. Let R be a noetherian ring, I an ideal of R and M a finitely
generated R-module. Let f ∈ Is \ Is+1. Then f is superficial for M w.r.t. I if,
and only if, one of the following two equivalent conditions is satisfied:
(i) m̃f̄ : G(M) → G(M)(s) is injective,
(ii) Supp(f)#EI

∩Ass(G(M)) = ∅,
where Supp denotes the underlying set of the scheme (f)#EI

.
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Embedding EI on the blowup SI – To get a better geometric understanding
of both the map m̃f̄ and the scheme (f)#EI

in lem. 2.3, we may embed the
scheme EI in the blowup scheme SI := ProjB(R), where:

B(R) := R[It] = ⊕
n∈N

Intn,

is graded by the powers of t, with the convention I0 = R.
For a subscheme of a projective scheme, it is possible to consider either

its global “homogeneous” equations (i.e. the homogeneous ideal defining it) or
its local ones in affine charts. As far as affine charts are concerned, fixing a
basis (h0, . . . , hr) of the ideal I of R, one defines an affine open covering of SI

by the Ui := D+(hit) ∼= Spec R[I/hi].
Denote also bI : SI → Spec R the blowup morphism induced by the inclusion

of R in B(R).
Then EI is the preimage (bI)−1(V (I)) and hence globally defined by the

homogeneous ideal I.B(R) in SI and locally by the equation hi in each Ui

for i = 0, . . . , r.

Total and weak transforms – Taking an f ∈ I, one defines its total transform
(bI)∗(f) as the preimage (bI)−1(V (f)) hence globally defined by the homogen-
eous principal ideal f.B(R) and locally also by f in each chart Ui.

Before going further, we put the emphasis on the following piece of termin-
ology that will be of some importance later:

Definition 2.4. i) If X is a scheme and Y is a subscheme of X, we say that Y
is locally principal if there is a covering of X by affine open subsets Ui = Spec Ai

such that Y ∩ Ui is defined by a principal ideal (fi) ⊂ Ai.
ii) We say that Y is a Cartier subscheme if it fulfills condition i) and further

the fi ∈ Ai are all non zero divisors.

Making no special assumption on f ∈ R, we see that (bI)∗(f) is simply a
locally principal subscheme of SI whereas EI is a Cartier subscheme.

This is enough for the following:

Definition 2.5. We define the weak transform (f)# of an element f ∈ Is \Is+1

on the blowup SI of I in Spec R, as the subscheme:

(f)# := (bI)∗(f)− s EI ,

where the − sign means that one takes locally the quotient of the equations in
each affine chart.4

Remark that this weak transform (f)# is also globally defined by the homo-
geneous ideal ftsB(R) of B(R).

The scheme (f)#EI
is the pull-back of the weak transform – Considering

the homogeneous equation of (f)# and the morphism (of degree zero) of graded
rings B(R) → G(R) = B(R)/IB(R), that sends fts on f̄ ∈ Is/Is+1, one may
define the intersection scheme (f)# ∩EI

5 as the subscheme of EI defined by the
homogeneous ideal f̄G(R).

4 The terminology weak transform may be found in [Hk] p. 142. I chose the # sign to mean
that this weak transform can be bigger than the strict transform of (f).

5also called the pull-back on EI of the locally principal subscheme (f)#
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Hence, EI ∩ (f)# is nothing but the scheme (f)#EI
of lem. 2.3, so that (ii) of

this lemma may be re-phrased as in the following:

Proposition 2.6. Under the same notation as in def. 1.1, f ∈ Is \ Is+1 is
superficial for M with respect to I if, and only if, on the blowup SI of Spec R

along I, denoting G(M) = G̃(M), and (f)# the weak transform defined in 2.5,
we have:

Supp ((f)#) ∩Ass (G(M)) = ∅. (9)

where Supp denotes the locus on SI defined by the weak transform (f)# and Ass
the (finite) set of associated points of G(M) (included in EI ⊂ SI).

In the special case M = R, (9) reads:

Supp ((f)#) ∩Ass (EI) = ∅. (10)

3 Weak transform vs. strict transform

In def. 2.5, we introduced the weak transform (f)# of an element f ∈ Is \ Is+1

on the blowup SI of the ideal I in Spec R.
Let us recall the classical definition of strict (or proper) transform of a sub-

scheme (cf. e.g. [E-H] p. 168). Recall first that the scheme-theoretic closure of
a subscheme is by definition the smallest closed subscheme containing it.

Definition 3.1. Let Y ⊂ Spec R a closed subscheme and bI : SI → S the
blowup of I in S = Spec R. The strict transform Y ′ of Y by bI is by definition
the scheme-theoretic closure of the preimage of Y \V (I) by bI , which we denote
by:

Y ′ := (bI)−1(Y \ V (I))
sch

.

Because of the uniqueness of the structure of subscheme on an open subset, this
subscheme is also the scheme-theoretic closure of (bI)−1(Y ) \ (bI)−1(V (I)) =
(bI)−1(Y ) \ EI . For the same reason the scheme-structure of V (I) is not to be
taken into account in this definition, but simply its support.

In the particular case of Y = (f) := Spec R/(f), its strict transform is:

(f)′ := (f)∗ \ EI
sch

,

but since, with (f)# the weak transform of def. 2.5, we trivially have (f)∗ \EI =
(f)# \ EI , one may just as well say:

(f)′ = (f)# \ EI

sch
.

This gives in particular the inclusion of schemes (f)′ ⊂ (f)# (whence the #

notation cf. footnote 4), and the condition of equality is given by the following
elementary lemma:

Lemma 3.2. With the same notation as in § 2 on the blowup, the weak trans-
form (f)# is equal to the strict transform (f)′ if, and only if, the support of the
exceptional divisor EI does not contain any associated point to the scheme (f)#,
what we denote by:

Supp(EI) ∩Ass(f)# = ∅. (11)
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Proof. This is a simple application of the theory of primary decomposition: the
inclusion of closed subschemes (f)′ ⊂ (f)# is proper if, and only if, one has a
decomposition:

(f)# = (f)′ ∪XI ,

into closed subschemes, where XI contains a point associated to (f)# (non
trivial decomposition), which must be in the support of EI since (f)′ and (f)#

coincide outside EI .

Because of the similarity of conditions in prop. 2.6 (10) and in lem. 3.2, up
to the permutation of the roles of Supp and Ass, we will investigate the precise
connection between these two conditions in the next section (see the conclusive
remark 4.4).
Case of modules – Let M be a (finitely generated) R-module and denote by
B(M) the OSI

-module defined on the blowup SI of I in Spec R by the graded
module:

B(M) = ⊕
n∈N

InMtn.

Then, for f ∈ I one may define the “restrictions” of B(M) to the strict trans-
forms (f)′ and weak transform (f)# by:

B(M)(f)′ := B(M)⊗OSI
O(f)′ , (12)

(resp. B(M)(f)# by tensor product with O(f)#).
In this context, the more general form of lemma 3.2 (with the same proof,

i.e. primary decomposition for modules) is:

Lemma 3.3. The two OSI
-modules B(M)(f)′ and B(M)(f)# defined in (12)

are isomorphic if, and only if,

Supp(EI) ∩Ass(B(M)(f)#) = ∅.

4 Superficiality and regularity

We first recall standard constructions in projective geometry (cf. [EGA] II § 2.6
or [Ii] § 7.1):
Morphism α – Let A := ⊕n∈NAn be a graded ring and M = ⊕n∈ZMn a graded
A-module. Then one defines for all n ∈ Z a morphism (of A0-modules):

αn : Mn → Γ(ProjA, M̃(n)), (13)

by, locally in each chart D+(fi) of ProjA, sending m ∈ Mn simply to m/1 ∈
Γ(D+(fi), M̃(n)).

Multiplication by sections of OX(s) – Take again A to be a graded ring,
X = ProjA and σ ∈ Γ(X,OX(s)). Such a global section defines for any OX -
module M, a morphism of multiplication by σ:

mσ : M→M(s). (14)

Explicitly, assume for simplicity that A = A0[A1] so that charts D+(fi) with
fi ∈ A1 cover X. Then, in each Ui := D+(fi), σ = aif

s
i with ai ∈ OX(Ui).
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Remark 4.1. In particular, since multiplication by fs
i is certainly injective

from M(Ui) → M(s)(Ui) the injectivity of mσ is equivalent to the elements
ai ∈ OX(Ui) being M(Ui) regular, with the usual terminology of a regular
element for a module (cf. e.g. [Ei] Chap. 17).

If this is the case we will say that the section σ ∈ Γ(X,OX(s)) is M-regular.

Application to X = Proj(G(R)) – Now we return to the setting of lemma 2.3:
for G(R) = ⊕n∈NIn/In+1, EI := ProjG(R) and f̄ ∈ G(R)s one gets from (13) a
global section αs(f̄) ∈ Γ(OEI

,OEI
(s)) and it is direct from the definitions that

the morphism m̃f̄ : G(M) → G(M)(s) considered in the cited lemma, coincides
with the multiplication by αs(f̄) in the sense of (14).

With the terminology of rem. 4.1, we get the following avatar of lemma 2.3:

Lemma 4.2. In the same setting as in lemma 2.3 and using the foregoing
definitions: f is superficial for M w.r.t. I if, and only if, the section αs(f̄) is
G(M)-regular.

Application to X = SI = ProjB(R) – As we did in § 2, we now shift from EI

to the larger space SI = Proj(⊕n∈N Intn) of blowup of I in Spec R.
The morphism α defined in (13) above also applies to get a global section

α(fts) ∈ Γ(SI ,OSI
(s)). Recall that we denote B(M) for the OSI

-module asso-
ciated to B(M) := ⊕n∈N InMtn.

Using all this, our main result boils down to the following permutation of
elements in a regular sequence:

Theorem 4.3. Let R be a noetherian ring, I an ideal of R with basis (h0, . . . , hr).
Denote Ui = D+(hit) the corresponding affine open subsets in the blowup space
SI = Proj(B(R)). Let M be a finitely generated R-module and B(M) the cor-
responding OSI

-module as defined above.
Then for an element f ∈ Is \ Is+1, the following four conditions are equi-

valent:
a) f is superficial for M w.r.t. I (cf. lem. 4.2, or lem. 2.3),
b) ∀ i = 0, . . . , r, ∀x ∈ SI , (hi, f/hs

i ) is a B(M)x-regular sequence (where “x”
denotes the localization at x),
c) ∀ i = 0, . . . , r, ∀x ∈ SI , (f/hs

i , hi) is a B(M)x-regular sequence,
d) the following two conditions are satisfied:

(i) αs(fts) is B(M)-regular (definition in rem. 4.1),
(ii) Supp(EI)∩Ass(B(M)(f)#) = ∅, where (f)# is the weak transform intro-

duced in 3.1 and we consider the “restriction” modules in the sense of (12).

Proof. Let us fix an i ∈ {0, . . . , r}, and work in the corresponding open subset
Ui
∼= Spec R[I/hi] on the blowup.

• (a)⇔(b): since B(M)(Ui) = M [I/hi], hi is regular for any R-module M , and
hence (b) reduces to the condition: f/hs

i is regular for B(M)(Ui)/hiB(M)(Ui) =
G(M)(Ui) at all x ∈ Ui. But, considering the corresponding classes f̄ and h̄i

in G(R)s and G(R)1 respectively, this is the same as f̄/h̄i
s being regular for

G(M)(Ui).
We now recognize the local equation of αs(f̄) and hence the condition αs(f)

is G(M)-regular of lemma 4.2, whence (b)⇔(a).
• (b)⇔(c): standard permutation property for regular sequences over a local
ring, cf. e.g. [Ei] cor. 17.2.
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• (c)⇔(d): in the sequence (f/hs
i , hi) in Ui, the first element defines the equa-

tion of αs(fts) whence (i) in d), and the condition for hi to be regular with
respect to the quotient B(M)(Ui) by f/hs

i translates as (ii) in d), since (f)#

is the subscheme defined by αs(fts) (using always the same relation between
associated points and zero divisors).

In the case M = R we get the better sounding formulation:

Remark 4.4. In the special case M = R in the foregoing theorem, we get that
(a) f is superficial w.r.t. I

if, and only if,
(d) (i) the weak transform (f)# is a Cartier subscheme of SI (cf. def. 2.4), and

(ii) Supp(EI)∩Ass((f)#) = ∅, which is exactly the condition (11) in lem. 3.2
so that the weak transform equals the strict transform.

5 Back to Kirby’s theorem

We claim now that thm. 1.3 is easily recovered from our thm. 4.3 condition (d).
Precisely conditions (i) (resp. (ii)) correspond in both results, as we now check:

Lemma 5.1. The following two conditions are equivalent:
(∗) Condition (i) in thm. 1.3, i.e. multiplication by f : M/ΓI(M) → M/ΓI(M)
is injective,
(∗∗) Condition (i) in thm. 4.3 (d), i.e. αs(fts) is B(M)-regular on the blowup
scheme SI .

Proof. Condition (∗∗) is equivalent to the multiplication by fts: InMtn →
In+sMtn+s being injective for n large, and since t is certainly a non-zero divisor,
we may just as well consider multiplication by f : InM → InM .

Hence to prove the lemma, one has to check, for n large, the following:

AssR(InM) = Ass(M/ΓI(M)). (15)

To prove (15), one may reduce to the case ΓI(M) = 0.
Indeed, by noetherian condition ΓI(M) = (0 :M In1) for a certain n1 and

hence In1 .M = In1 .(M/ΓI(M)). So replacing M by M/ΓI(M) and taking
n ≥ n1, we may assume ΓI(M) = 0.
We now prove Ass(InM) = Ass(M) for all n in the case ΓI(M) = 0.

From the inclusion InM ⊂ M , one always has Ass(InM) ⊂ Ass(M). Con-
versely, if p ∈ Ass(M), one may localize at p and denote M and R for Mp and
Rp. Then p = Ann(m) is equivalent to p.m = 0, since p is the maximal ideal.

Then, as ΓI(M) = 0 we have for any fixed n, In.m 6= 0 i.e. there is an i ∈ In

such that i.x 6= 0. Hence, i.p.x = 0 gives p = Ann(ix) i.e. p ∈ Ass(In.M).

Lemma 5.2. The following two conditions are equivalent:
(∗) Condition (ii) in Kirby’s thm. 1.3 i.e. the epimorphism:

G(M)/f̄ .G(M) → G(M/f.M) is an isomorphism between components of
large degree,
(∗∗) Condition (ii) in our thm. 4.3 (d) i.e. Ass(B(M)(f)#) ∩ Supp(EI) = ∅.
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Proof. From lemma 3.3, we know that condition (∗∗) is exactly the condition for
the isomorphism of the two OSI

-modules defined by the restriction B(M)(f)#

and B(M)(f)′ of B(M) to the weak and strict transform respectively.
But since these two modules are clearly isomorphic at each point outside EI

it is equivalent to check that their pull-back on EI are actually isomorphic.

These pull-back (taking ⊗EI) are exactly ˜G(M)/f̄ .G(M) for the weak trans-

form and ˜G(M/fM) for the strict transform.
This is equivalent to condition (∗) from the standard lemma 2.2.

6 More reasons for the miracle: a theorem of
Flenner-Vogel

The miracle referred to in the title is the one mentioned after prop. 1.2.
As H. Flenner explained it to us, one may also get Kirby’s characterization

(thm. 1.3) from the following more precise result in [F-V]; recall first that for
an R-module M one defines the cycle Z(M) associated to M by:

Z(M) =
∑

p∈Min(M)

l(Mp)[p],

where Min(M) is the set of minimal associated primes to M .

Theorem 6.1. Let R be a noetherian ring, I an ideal of R and

0 → M0 → M1 → M2 → 0,

an exact sequence of finitely generated R-modules.
Considering the associated graded modules, one gets a complex GI(M0) →

GI(M1) → GI(M2) in which the last map is still onto and one has the equality
of cycles:

Z
(
ker(GI(M0) → GI(M1))

)
= Z

(
ker(GI(M1)/GI(M0) → GI(M2))

)
,

where GI(M1)/GI(M0) stands for GI(M1)/ Im(GI(M0) → GI(M1)).

Remark 6.2. For a map R-modules ϕ : M → N , the associated map of
graded GI(R)-modules is understood to be the map from InM/In+1M →
In+σN/In+σ+1N , where σ is defined by the condition that Im ϕ is in IσN
and not in Iσ+1N .

For the existence of such a σ, and hence in the theorem above, one has
to assume that Krull’s intersection theorem (cf. e.g. [Ei] 5.4) applies. In the
following, we will assume that I is in the Jacobson radical of R (which is also
the hypothesis of thm. 1.3).

For example, the inclusion map f.M → M for an f in Is and not in
Is+1, actually gives a map GI(f.M)(−s) → GI(M), whose image is exactly
f̄ .GI(M)(−s), where f̄ is the class of f in Is/Is+1. However, following [F-V],
we will omit the shift sign (−s) in what follows.

Considering now an f ∈ Is \ Is+1, multiplication by f in M gives an exact
sequence:

0 → AnnM (f) → M → M → M/fM → 0, (16)
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that one has to split, in order to apply thm. 6.1, into the two sequences:

0 → AnnM (f) → M → f.M → 0, (17)
0 → f.M → M → M/f.M → 0. (18)

Taking GI in (16) gives a complex, hence multiplication by f̄ ∈ Is/Is+1

from GI(M) to GI(M) may be decomposed as the following chain:

GI(M) 1→ GI(M)/GI(AnnM f) 2→ GI(f.M) 3→ GI(M). (19)

For simplicity, we will denote AnnM (f) with Ann f .
By def. 1.1, f is superficial if the kernel of the total map in (19) vanishes

in high degree, which is equivalent to the same property for the kernels of the
three maps 1, 2, 3 above.

For the map 1, this means that Im
(
GI(Ann f) → GI(M)

)
vanishes in high

degree (the convention for notation is as on the last line of thm. 6.1).
For the map 2, this means that ker

(
GI(Ann f) → GI(M)

)
vanishes in high

degree, applying thm. 6.1 to (17).
For the map 3, this means that ker

(
GI(M)/GI(f.M) → GI(M/f.M)

)
van-

ishes in high degree, applying thm. 6.1 to (18).
The condition for the third map is explicitly condition (ii) in Kirby’s thm,

because f̄ .GI(M) is the image of the map GI(f.M) → GI(M) (cf. rem. 6.2).
The condition for the first two maps is equivalent to GI(Ann f) vanishing in

high degree. As put in the following remark, this is equivalent to condition (i)
in Kirby’s thm. 1.3. This ends the proof of Kirby’s theorem.

Remark 6.3. Kirby’s condition (i) that multiplication by f is injective inside
M/ΓI(M) is equivalent to GI(Ann f) vanishing in high degree.

Indeed, recall that ΓI(M) = (0 :M Ik) for any large enough k. Hence,
the condition of injectivity in M/ΓI(M) means that Ann f ⊂ ΓI(M) i.e. that
Ik.Ann f = 0 for k large enough.

On the other hand, [GI(Ann f)]k = 0 also means Ik.Ann f = 0 by Na-
kayama’s lemma (cf. [Ei] Cor. 4.8), whence the remark.
Acknowledgment –The paper is a souped-up version of the first chapter of the author’s
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