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Abstract. — In this paper, we show how to apply a theorem by Lê D.T. and the
author about linear families of curves on normal surface singularities to get new
results in this area. The main concept used is a precise definition of general elements
of an ideal in the local ring of the surface. We make explicit the connection between
this notion and the more elementary notion of general element of a linear pencil,
through the use of integral closure of ideals. This allows us to prove the invariance
of the generic Milnor number (resp. of the multiplicity of the discriminant), between
two pencils generating two ideals with the same integral closure (resp. the projections
associated). We also show that our theorem, applied in two special cases, on the one
hand completes, removing an unnecessary hypothesis, a theorem by J. Snoussi on the
limits of tangent hyperplanes, and on the other hand gives an algebraic µ-constant
theorem in linear families of planes curves.

Résumé (Eléments généraux d’un idéal m-primaire sur une singularité de
surface normale)

Dans ce travail, on expose des applications d’un théorème obtenu avec Lê D.T. sur
les familles linéaires de courbes sur une singularité de surface normale. Le principal
concept utilisé est une définition précise d’éléments généraux dans un idéal m-primaire
de l’anneau local de la surface. On explicite le lien qui existe entre cette notion et
celle, plus élémentaire, d’élément général d’un pinceau linéaire grâce à la notion de
clôture intégrale des idéaux.

Ceci permet de prouver l’invariance de la valeur du nombre de Milnor générique
(resp. de la multiplicité du discriminant) si l’on considère différents pinceaux engen-
drant des idéaux de même clôture intégrale (resp. les projections associées).

Nous montrons aussi comment ce résultat complète, en enlevant une hypothèse
inutile, un théorème de J. Snoussi sur les limites d’hyperplans tangents, et d’autre
part donne aussi un théorème de type µ-constant algébrique pour les familles linéaires
de courbes planes.
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Introduction

Let (S, 0) be a germ of normal complex-analytic surface, with local ring OS,0 cor-
responding to the germs of holomorphic functions on (S, 0), and maximal ideal m,
formed by the germs taking the value 0 at 0.

To any couple (f, g) of elements of m, one may associate three related objects : the
linear pencil of the curves Cα,β : αf + βg = 0 with (α, β) ∈ C2, the ideal J = (f, g)
in OS,0, and the projection :

p : (S, 0) → (C2, 0),
x 7→ (f(x), g(x)).

We will always assume that the curves f = 0 and g = 0 share no common component
(in other words : the corresponding linear system has no fixed component, the ideal
J is m-primary, and the projection p is finite).

Denoting by (∆p, 0) ⊂ (C2, 0) the discriminant of the projection p (see § 4), one
may define a general element of the pencil (Cα,β) as the inverse-image by p of any line
αx + βy = 0 in C2 which does not lie in the tangent cone of (∆p, 0).

One may in turn define an element h = af + bg ∈ J with a, b ∈ OS,0 to be general
if, and only if, a(0)f + b(0)g defines a general element of the pencil (Cα,β).

In fact, we define here, for any m-primary ideal I in OS,0, a notion of general
element which has the following property : take any pair (f, g) of elements of I such
that the ideal J = (f, g) is a reduction of I (see § 1), then the general elements of
J (in the “pencil” sense) will be general elements of I, and conversely any general
element of I will be obtained as an element of such a reduction.

However, this will not be our first definition of the general elements of I since
we rather define them purely by their behaviour on the normalized blow-up of I (cf.
def. 2.1).

In a previous paper, we proved that these elements are characterised by their Milnor
number (theorem 2.3). Here, we focus on the applications of this result :

In § 3, we show how it covers both the study of limit of hyperplanes tangent to
a normal surface, and the study of linear systems of plane curves, proving on one
side a complement to a theorem by J. Snoussi, and on the other side an algebraic
µ-constant theorem for linear systems of plane curves (also obtained by other means
by E. Casas).

In § 4, we prove the relation between our definition of general elements of I and
the one for pencils as claimed above. As a corollary, for two pencils (f, g) and (f ′, g′)
defining a reduction of I, the general elements of both pencils have the same Mil-
nor number, and the discriminants of the corresponding projections have the same
multiplicity.

1. Geometry of a theorem by Samuel

In this section only, we consider a germ (X, 0) of complex analytic space with
arbitrary dimension d. We let O := OX,0 be the corresponding local analytic ring.
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In fact, the content of this section can be extended to any local noetherian ring with
infinite residue field (see e.g. [Li] or [Bo] Chap. 2.3).

We recall that an element f ∈ O is said to be integrally dependant on an ideal I
of O if it satisfies an equation :

fn + a1f
n−1 + · · ·+ an = 0,

with the condition ai ∈ Ii for all i = 1, . . . , n.
The theory of integral dependance on ideals was initiated by O. Zariski (see [S-Z]

Appendix 4) and under the influence of H. Hironaka was developed in the seminar
[LJ-Te] where several characterisations are given. In the hands of B. Teissier, it
became a cornerstone in the theory of equisingularity (see e.g. [Te-2] Chap. 1). More
recently, the theory was extended to modules under the impulse of T. Gaffney (see
the survey [Ga-Ma]).

Let us just mention that the set I of the elements of O integrally dependant on
I is an ideal, called the integral closure of I in O, and that the definition of integral
closure finds a natural expression on the blow-up XI of the germ (X, 0) along I (see
[Te-2]).

For the sake of simplicity, we restrict here to the case of a reduced germ (X, 0)
(cf. [Bo] loc. cit. for the general case). Then one may take the normalization XI of
the blow-up XI , and following [Te-2] (Chap. 1, (1.3.6) et seq.), one proves that the
equality I = J of integral closures of ideals in O is equivalent to the equality :

(1) I.OXI
= J.OXI

,

for the corresponding sheaves on the normalized blow-up XI .
We now take I to be an m-primary ideal of O i.e. containing a power ms of the

maximal ideal of O.
Denoting by bI : XI → (X, 0) the normalized blow-up, we write D1, . . . , Ds for the

irreducible components of the reduced exceptional divisor |(bI)−1(0)|, and vDi
for the

valuation along Di.
Then we define (cf. [B-L-1] déf-prop. 1) an element f ∈ I to be v-superficial if,

and only if,

(2) vDi
(f) = vDi

(I) := inf{vDi
(g), g ∈ I} for all i = 1, . . . , s.

Denoting by Df :=
∑s

i=1 vDi(f)Di, the total transform (f)∗ := (f ◦ bI) on XI may
be written as a sum of divisors :

(f)∗ = (f)′ + Df ,

with (f)′ the strict transform of f on XI .
The first part of the following proposition is an avatar of a theorem by P. Samuel.

The second part is the geometric version announced in the title :

Proposition 1.1. — i) Let O be a local noetherian ring of dimension d with infin-
ite residue field O/m. Let I be an m-primary ideal of O. There exists a d-tuple
(f1, . . . , fd) of elements of I such that the ideal (f1, . . . , fd) is a reduction of I, i.e.
has the same integral closure as I.
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ii) In our setting, let O be the local ring of a reduced analytic germ (X, 0). The d-
tuples in i) are characterized by the two conditions that first, all the fi are v-superficial
in I and secondly, the intersection of their strict transforms (fi)′ with the exceptional
divisor D verifies :

(f1)′ ∩ (f2)′ ∩ · · · ∩ (fd)′ ∩ D = ∅.
We call such a d-tuple a good d-tuple of v-superficial elements in I.

We will not give the proof here, but the reader should understand that ii) also
easily gives the proof of i) thanks to the characterisation on (1) above. In fact, the
same “geometric proof” works under the general hypotheses of i) but one has to work
on the non normalized blow-up (see [Bo] Chap. 2).

The original theorem by Samuel was formulated in terms of multiplicities (cf. [S-Z]
Chap. VIII thm. 22) so that it seems relevant to mention the following :

Proposition 1.2. — Let O be analytic local integral domain, and I an m-primary
ideal of O. The multiplicity e(I/(f),O/(f)) = e(I,O) if, and only if, f is v-
superficial.

This result can be deduced from a general formula for e(I/(f),O/(f)) due to
Flenner and Vogel in [Fl-Vo] (for any noetherian local ring).

2. General elements of an ideal

From now on, we restrict ourselves to a two-dimensional normal germ (S, 0).(1)

Definition 2.1. — Let O be the local ring of a germ of normal surface (S, 0) and
let I be an m-primary ideal of O. Adapting the notation from section 1, SI denotes
the normalized blow-up of I on (S, 0). We define an element f ∈ I to be general if,
and only if,

(i) f is v-superficial in I (cf. § 1 (2)),
(ii) the strict transform (f)′ is a smooth curve transversal to the exceptional divisor

D in SI , which means that (f)′ does not go through singular points either of SI

or of D and that the intersection is transverse.

Consider any resolution r : X → SI of the singularities of SI , good in the sense
that, denoting by π = bI ◦ r : X → (S, 0), the exceptional divisor Z = π−1(0) has
only normal-crossing singularities.

Denote by (f ◦ π) = (f)′ + Zf the decomposition of the total transform of (f) on
X into an exceptional (compact) part Zf and its strict transform denoted again (f)′.

Denoting ZI the divisor defined by I.OX on X, we easily get the following :

Proposition 2.2. — With the notation as above, f ∈ I is general if, and only if, its
total transform on X is such that :

α) its exceptional part is the generic one for the elements of I i.e. Zf = ZI ,
β) its strict transform is a (multi-germ of) smooth curves transversal to Z.

(1)For the elementary properties of normal surfaces we use here, see [Sn] § 2.6, and [B-L-2].
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As a corollary to this proposition, it is possible (either by a computation of Euler-
Poincaré characteristic of covering spaces as indicated in [B-L-1] § 4, which followed
[GS], or by an algebraic derivation from a Riemann-Roch formula as in [Mo] 2.1.4)
to compute the Milnor number (in the sense of [Bu-Gr]) of the complex curve defined
by any general element f ∈ I. We then get :

(3) µ(f) = µI := 1− (ZI .(ZI − |ZI | −K)),

on any good resolution as defined before the proposition, where |ZI | (resp. K) denote
the reduced divisor associated to ZI (resp. the numerically canonical cycle) and ( · )
denotes the intersection product (see [B-L-1] or [Bo] chap. 3 for more details).

The main theorem in [B-L-1] is the converse implication :

Theorem 2.3. — Let (S, 0) a germ of normal surface singularity, and I an m-
primary ideal of OS,0. An element f ∈ I is general in the sense of 2.1 if, and
only if, the Milnor number µ(f) has the value µI prescribed by formula (3), which is
also the minimum Milnor number for the elements of I.

Remark 2.4. — Thanks to the algebraic computation of the Milnor number for
general elements which follows from [Mo] (see before formula (3)), theorem 2.3 is
proved without any topological argument, so that the proof fits to the setting of
algebraic geometry over any algebraically closed field of characteristic zero.

3. Two special cases

3.1. The case when (S, 0) is arbitrary but I = m. — For a germ (S, 0) of
normal surface, given an embedding (S, 0) ⊂ (CN , 0) defined by N generators of
the maximal ideal m of OS,0, we may consider the elements f ∈ m as hypersurface
sections of S. From this point of view, J. Snoussi studies in [Sn] what he calls the
general hyperplanes with respect to (S, 0). An hyperplane H 3 0 in CN is said to be
general for (S, 0) if, and only if, it is not the limit of hyperplanes tangent to the non
singular locus of a small representative of (S, 0) in CN (loc. cit. déf. 2.2). He then
proves (loc. cit. thm. 4.2.) :

Theorem 3.1 (Snoussi). — If (S, 0) is a normal surface singularity embedded in
(CN , 0), and if H is a hyperplane which does not contain an irreducible component of
the tangent cone CS,0 of (S, 0), then H is general if, and only if, the Milnor number
µ(H ∩ S, 0) is minimum among the Milnor numbers of hyperplane sections of (S, 0).

From the definition of v-superficial elements given in § 1 (2), it is clear that the
equation of a hyperplane H defines a v-superficial element of the maximal ideal of
OS,0 if, and only if, H does not contain an irreducible component of CS,0. Hence, our
theorem 2.3 improves theorem 3.1 as follows (see (ii)) :

Corollary 3.2 (of our theorem 2.3). —
(i) The equation of a general hyperplane in the sense of Snoussi defines a general
element of m in the sense of definition 2.1. Conversely, if one takes a general element
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f ∈ m and any embedding of (S, 0) ⊂ (CN , 0) such that f is induced by a coordinate
function, f = 0 defines a general hyperplane.
(ii) In theorem 3.1, one may remove the hypothesis “H does not contain an irreducible
component of the tangent cone CS,0 of (S, 0)” since theorem 2.3 proved that elements
with µ minimum necessarily have this property.(2)

3.2. The case when (S, 0) = (C2, 0) and I is arbitrary. — Since the definition
of general element of an ideal given in def 2.1 was the same for an ideal I and its
integral closure Ī we consider only integrally closed ideals in the following discussion
i.e. ideals such that I = Ī.

These ideals were first studied by O. Zariski (see [S-Z] App. 5, where they are
rather called complete) as the algebrization of Enriques’theory of clusters of points.
For all this, we refer to the nice survey [LJ], and the book [Ca] :

A cluster K = (0i, νi)i is a set of points 0i infinitely near 0 i.e. lying above 0 in
a sequence of point blow-ups starting from (C2, 0), with ascribed multiplicities νi.
There is a one-to-one correspondence between the integrally closed ideals of (C2, 0)
and the clusters (Oi, νi) satisfying the so-called proximity relations of Enriques (see
[LJ] 5.1), also called consistent clusters in [Ca] (p. 124).

For such a cluster K = (0i, νi)i, the corresponding ideal IK is defined as the set of
f such that virtual multiplicity of the curve defined by f at the point 0i is at least νi

(cf. loc. cit.).(3)
Now f ∈ IK is said to go sharply through K if, and only if, f goes through the 0i

with effective multiplicity equal to the νi and has no singular points outside K (cf.
[Ca] p. 127).

Remark 3.3. — It is easy to see that two germs going sharply through K are equisin-
gular (cf. [Ca] p. 127), in the sense of the well-known equisingularity theory of germs
of plane curves.

The careful study in [LJ], compared to our proposition 2.2, yields :

Lemma 3.4. — For an integrally closed m-primary ideal I of OC2,0, corresponding
to a (consistent) cluster K, an element f ∈ I is general in the sense of our def. 2.1
if, and only if, f goes sharply through K in the sense above.

Proof. — The proof of (ii)⇔(ii’) in [LJ] p. 360-361, gives exactly the equivalence
between the fact that f goes through the Oi with effective multiplicity νi and the fact
that Zf = ZI on the minimal resolution of the blow-up of (C2, 0) along I (notation
of prop. 2.2).

Now the fact that f has no singular points outside K gives that the strict transform
of f on S is transversal to the exceptional divisor by the argument of [LJ], proof of 6.1.
(applied to each branch of f corresponding to a simple ideal in the decomposition of I).
The converse is clear.

(2)Note that this is exactly the tricky part of the argument in [B-L-1].
(3)In [Bo] Chap. 1, we explain how, once IK is known, the virtual multiplicities of the elements of
I coincide with the multiplicities of their weak transforms (cf. loc. cit. 1.1.6).
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With this, we get from our theorem 2.3 and rem. 3.3 the following :

Corollary 3.5. — For an integrally closed m-primary ideal I of OC2,0, all the ele-
ments f ∈ I such that µ(f) has the generic value µI are equisingular.

Note that this µ-constant result for linear systems of plane curves is obtained
without using topology (cf. rem. 2.4). Another algebro-geometric proof of the same
result is derived from the theory of clusters in [Ca] § 7.3. No such algebraic proof is
known for the much more general theorem of Lê (in [Lê-1]) on arbitrary (non-linear)
families of germs of plane curves (cf. the remark on p. 361 in [Te-2]).

4. General elements and discriminants

We go back to our general setting i.e. (S, 0) is any germ of normal surface singu-
larity, I any m-primary ideal of OS,0 and we take (f, g) a good couple of v-superficial
elements in I (cf. prop. 1.1) so that J = (f, g) is a reduction of I.

Let p : (S, 0) → (C2, 0) be the projection corresponding to f, g as in the introduc-
tion, whose degree deg(p) is by definition the multiplicity e(f, g) = e(I).

Following Teissier (cf. [Te-1]), one defines the critical space (Cp, 0) of p by the
ideal ICp

= F0(Ωp) in OS,0, where Ωp denotes the module of relative differentials,
and F0 the zeroth Fitting ideal. Then, denoting OCp,0 = OS,0/ICp

, one constructs
the discriminant space (∆p, 0) as the image of (Cp, 0) by p, defined in (C2, 0) by the
ideal :

I∆p
:= F0(p∗OCp,0).

Now the space (∆p, 0) may be both non-reduced at a generic point of one of its
components, and have an embedded component at 0. We denote ∆div the divisorial
part of (∆p, 0) i.e. we do not consider the possible embedded component at 0 (the
reader will find more detail on all this in [B-L-2] § 3).

The following lemma was called Lê-Greuel formula in [B-L-2] 3.9 :

Lemma 4.1. — With the notation as above, for any line L : αx + βy = 0 in C2,
denoting by ( · )0 the intersection number at 0, we have the following equality :

(4) (∆div · L)0 = µ(p−1(L), 0) + deg(p)− 1,

where µ is the Milnor number in the sense of [Bu-Gr].

Remark 4.2. — From the definition 2.1 of general elements applied to J = (f, g),
and Bertini’s theorem, it is easy to see that for generic values of the numbers (α, β) ∈
C2 the element αf + βg of the linear pencil defined by f, g is a general element of the
ideal J (cf. also [B-L-1]).

Now with the formula (4) above, one deduces the following :

Corollary 4.3 (of theorem 2.3). — Let J = (f, g) be an m-primary ideal of OS,0.
The elements αf+βg with (α, β) ∈ C2 which are general elements of the ideal J (in the
sense of def. 2.1) are exactly the inverse-images p−1(L) of the lines L : αx + βy = 0
transversal to the discriminant in lemma 4.1.
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Proof. — The formula (4) gives the equivalence between minimal Milnor number in
the pencil and minimal intersection number (∆div · L)0; by remark 4.2 we already
know that the minimum Milnor number in J is obtained by elements of the pencil,
and we conclude by theorem 2.3.

Now, we may also compare two projections p = (f, g) and p′ = (f ′, g′) such that the
corresponding ideals (f, g) and (f ′, g′) have the same integral closure I. We then know
that deg(p) = deg(p′) = e(I) and from the foregoing, the generic Milnor numbers in
the two pencils defined by (f, g) and (f ′, g′) are both equal to the same number µI

as defined in formula (3). Then formula (4) yields :

Corollary 4.4. — Let (f, g) and (f ′, g′) be two m-primary ideals on OS,0 having
the same integral closure I, the multiplicity of the discriminant of the projections p
defined by f, g and p′ defined by f ′, g′ onto C2 are the same, equal to :

(5) e(∆p, 0) = µI + e(I)− 1.

In the special case of any projection p = (f, g) with deg(p) equal to the multiplicity
e(S, 0) of the germ (S, 0) (which is by definition the multiplicity e(m)), by a theorem
of Rees (cf. [Te-2] p. 340), (f, g) is a reduction of m. Hence, for any such projection
we have the following formula :

(6) e(∆p, 0) = µ2 + µ1,

where µ2 is the generic Milnor number µm in m, and µ1 = e(S, 0)− 1. The notation
µi follows Teissier (cf. [Te-2] ex. 2.2 p. 423) where the µi(X, 0) denote in general the
Milnor number of the intersection of a hypersurface (X, 0) with a “general enough”
linear subspace of dimension i. Here our (S, 0) is no longer a hypersurface so that the
Milnor number is in the sense of [Bu-Gr].
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